发明专利:
[1]赵耀华,王林成,徐红霞,全贞花. 一种安全节能的平板热管风冷式燃料电池堆[P]. CN216084968U,2022-03-18.
[2]赵耀华,靖赫然,徐红霞,全贞花. 一种基于微热管阵列的节水消雾冷却塔设备及系统[P]. CN215598158U,2022-01-21.
[3]赵耀华,王林成,徐红霞,全贞花. 一种安全节能的平板热管风冷式燃料电池堆及热管理方法[P]. CN113823823A,2021-12-21.
[4]赵耀华,靖赫然,徐红霞,全贞花. 一种基于微热管阵列的节水消雾冷却塔设备及系统[P]. CN113432449A,2021-09-24.
[5]全贞花,刘新,孙育英,赵耀华. 基于平板热管的雪车雪橇赛道[P]. CN113215918A,2021-08-06.
[6]杨金钢,赵耀华,韦新东,王浩,许永超,刘晖晧,刘禹宏. 一种基于柔性热管的动力电池管理系统及方法[P]. CN111002830B,2021-06-18.
[7]刁彦华,秦倩,赵耀华,王泽宇,陈传奇. 一种微热管阵列式梯级相变蓄热系统[P]. CN112985135A,2021-06-18.
[8]王林成,全贞花,赵耀华,靖赫然. 平板热管式热电热回收新风机[P]. CN212585115U,2021-02-23.
[9]刁彦华,王泽宇,赵耀华,梁林. 一种复合抛物面聚光发电-相变蓄热装置[P]. CN110686414B,2020-12-04.
[10]杨金钢,赵耀华,韦新东,王浩,许永超,刘晖晧,刘禹宏. 一种基于柔性热管的动力电池管理系统及方法[P]. CN111002830A,2020-04-14.
[11]刁彦华,王泽宇,赵耀华,陈传奇. 一种基于搭接式微热管阵列的真空管太阳能集热-储热一体化装置[P]. CN110701799A,2020-01-17.
[12]刁彦华,王泽宇,赵耀华,梁林. 一种复合抛物面聚光发电-相变蓄热装置[P]. CN110686414A,2020-01-14.
[13]刁彦华,王泽宇,赵耀华,王腾月. 一种应用复合抛物面聚光器的真空管-微热管阵列太阳能集热-储热一体化装置[P]. CN110686415A,2020-01-14.
[14]孙峙峰,赵耀华,徐伟,王东旭. 一种封装式高效蓄冷装置[P]. CN107255326B,2019-12-17.
[15]杨金钢,赵耀华,全贞花,王岗. 一种用于多热源散热的余热储热回收方法[P]. CN109539291B,2019-12-13.
[16]杨金钢,赵耀华,王春青,陈傲雪,赵洪宇,邓兰西. 一种基于微热管技术的低温淋浴废水热回收换热装置[P]. CN108050872B,2019-09-10.
[17]赵耀华,靖赫然,全贞花,徐红霞. 一种新型太阳能PV/T建筑一体化幕墙构件及多能互补供能系统[P]. CN209293246U,2019-08-23.
[18]赵耀华,靖赫然,全贞花,董瑞雪. 一种基于平板微热管阵列的地板辐射采暖系统[P]. CN208794530U,2019-04-26.
[19]刘婧,刁彦华,赵耀华. 一种扁管式相变蓄热装置[P]. CN107062972B,2019-03-29.
[20]杨金钢,赵耀华,全贞花,王岗. 一种用于多热源散热的余热储热回收方法[P]. CN109539291A,2019-03-29.
[21]王泽宇,刁彦华,赵耀华. 一种基于搭接式平板微热管阵列的太阳能集热、蓄热一体化装置[P]. CN107062646B,2019-03-22.
[22]赵耀华. 一种高效板式低温暖气片及其专用组件[P]. CN106403640B,2019-03-19.
[23]赵耀华,靖赫然,全贞花,董瑞雪. 一种干式接触式平板热管地板辐射采暖方法及采暖系统[P]. CN109307305A,2019-02-05.
[24]赵耀华,靖赫然,全贞花,徐红霞. 一种新型太阳能PV/T建筑一体化幕墙构件及多能互补供能系统[P]. CN109235717A,2019-01-18.
[25]赵耀华. 一种低温暖气片[P]. CN106323042B,2018-09-11.
[26]杨金钢,赵耀华,王春青,陈傲雪,赵洪宇,邓兰西. 一种基于微热管技术的低温淋浴废水热回收换热装置[P]. CN108050872A,2018-05-18.
[27]杨金钢,赵耀华,陈傲雪,丁金波,曹东旭,于江. 一种适于严寒地区农村住宅联合供暖供热系统[P]. CN108036387A,2018-05-15.
[28]杨金钢,赵耀华,陈傲雪,包满喜,曹东旭,李中阳. 一种基于微热管技术的空气-水一体化太阳能集热器[P]. CN108019958A,2018-05-11.
[29]赵耀华,全贞花,刁彦华. 高热流密度机柜散热冷却方法及其复合换热器[P]. CN107548263A,2018-01-05.
[30]赵耀华. 一种平板微热管相变蓄放热系统[P]. CN105627797B,2017-12-15.
[31]杨金钢,赵耀华,陈傲雪,李鑫福. 一种基于微热管技术的低温烟气热回收换热装置[P]. CN206724267U,2017-12-08.
[32]孙峙峰,赵耀华,徐伟,王东旭. 一种封装式高效蓄冷装置[P]. CN107255326A,2017-10-17.
[33]刘婧,刁彦华,赵耀华. 一种扁管式相变蓄热装置[P]. CN107062972A,2017-08-18.
[34]王泽宇,刁彦华,赵耀华. 一种基于搭接式平板微热管阵列的太阳能集热、蓄热一体化装置[P]. CN107062646A,2017-08-18.
[35]杨金钢,赵耀华,陈傲雪,李鑫福. 一种基于微热管技术的低温烟气热回收换热装置[P]. CN106989426A,2017-07-28.
[36]刁彦华,赵耀华,王泽宇,梁林. 平板微热管阵列式太阳能空气集热、蓄热一体化装置[P]. CN106839463A,2017-06-13.
[37]赵耀华,叶欣,张楷荣. 圆柱体电池组的热管理系统和方法[P]. CN106785236A,2017-05-31.
[38]赵耀华. 一种高效板式低温暖气片及其专用组件[P]. CN206160766U,2017-05-10.
[39]赵耀华,叶欣,张楷荣. 长方体电池组的热管理系统和方法[P]. CN106571499A,2017-04-19.
[40]赵耀华. 一种新型混合驱动式节能空调末端[P]. CN206055780U,2017-03-29.
[41]赵耀华. 一种低温暖气片[P]. CN206056342U,2017-03-29.
[42]赵耀华. 一种高效板式低温暖气片及其专用组件[P]. CN106403640A,2017-02-15.
[43]关云峰,程鹏,樊洪明,闫桂兰,彭宏,孟文博,孙立冬,赵耀华. 一种平板热管及相变蓄放热装置[P]. CN205940240U,2017-02-08.
[44]赵耀华. 一种新型混合驱动式节能空调末端[P]. CN106369674A,2017-02-01.
[45]赵耀华. 一种低温暖气片[P]. CN106323042A,2017-01-11.
[46]赵耀华,张楷荣. 热管辐射立式采暖/制冷系统和方法[P]. CN103954073B,2017-01-04.
[47]赵耀华,张楷荣. 半导体温差发电装置[P]. CN101882902B,2016-12-14.
[48]赵耀华,全贞花,刁彦华. 高热流密度机柜复合换热器[P]. CN205812621U,2016-12-14.
[49]赵耀华,刁彦华,张楷荣. 一种微热管阵列板相变蓄放热方法与系统[P]. CN106123661A,2016-11-16.
[50]赵耀华,张楷荣. 热管辐射式顶板采暖/制冷系统和方法[P]. CN103940147B,2016-06-22.
[51]赵耀华. 一种平板微热管相变蓄放热系统[P]. CN105627797A,2016-06-01.
[52]赵耀华. 一种蓄热装置[P]. CN105627594A,2016-06-01.
[53]赵耀华,叶欣,张楷荣. 圆柱体电池组的热管理系统[P]. CN205282609U,2016-06-01.
[54]赵耀华. 一种蓄热装置及蓄热系统[P]. CN105526722A,2016-04-27.
[55]赵耀华,叶欣,张楷荣. 长方体电池组的热管理系统[P]. CN205039216U,2016-02-17.
[56]赵耀华,朱婷婷,刁彦华. 热管式平板太阳能空气集热器[P]. CN204987500U,2016-01-20.
[57]赵耀华,朱婷婷,刁彦华. 热管式平板太阳能空气集热器及其采暖方法[P]. CN105066471A,2015-11-18.
[58]赵耀华,赵文仲,朱滨,全贞花,刁彦华. 太阳能空气集热采暖系统和方法[P]. CN102980238B,2015-08-19.
[59]赵耀华,张楷荣. 一种高效换热水管以及热管辐射采暖/制冷系统[P]. CN203893729U,2014-10-22.
[60]赵耀华,张楷荣. 热管辐射式顶板采暖/制冷系统[P]. CN203824159U,2014-09-10.
[61]赵耀华,张楷荣. 热管辐射立式采暖/制冷系统[P]. CN203824160U,2014-09-10.
[62]赵耀华,张楷荣. 一种高效换热水管以及热管辐射采暖/制冷系统[P]. CN103968700A,2014-08-06.
[63]赵耀华,张楷荣. 板状热管插接式大功率LED散热器[P]. CN203757673U,2014-08-06.
[64]赵耀华,张楷荣. 热管辐射立式采暖/制冷系统和方法[P]. CN103954073A,2014-07-30.
[65]赵耀华,张楷荣. 热管辐射式顶板采暖/制冷系统和方法[P]. CN103940147A,2014-07-23.
[66]赵耀华. 新型散热器[P]. CN203687710U,2014-07-02.
[67]赵耀华,张楷荣. 板状热管插接式大功率LED散热器[P]. CN103807835A,2014-05-21.
[68]赵耀华,张楷荣. 大功率集成发热器件均温支架及大功率集成发热器件组件[P]. CN203536416U,2014-04-09.
[69]赵耀华,全贞花,侯隆澍,王伟. 新型太阳能空气源热泵系统及热水制备方法[P]. CN102563973B,2014-04-02.
[70]赵耀华. 新型散热器[P]. CN103615921A,2014-03-05.
[71]赵耀华,赵文仲,朱滨,全贞花,刁彦华. 太阳能空气集热采暖系统[P]. CN203036757U,2013-07-03.
[72]赵耀华,赵文仲,朱滨,全贞花,刁彦华. 太阳能空气集热采暖系统和方法[P]. CN102980238A,2013-03-20.
[73]赵耀华,全贞花,侯隆澍,王伟. 新型太阳能空气源热泵系统[P]. CN202648245U,2013-01-02.
[74]赵耀华,张楷荣,刁彦华. 具有多层微孔管阵列的三维平板热管及其加工工艺[P]. CN101738118B,2012-08-01.
[75]赵耀华,全贞花,侯隆澍,王伟. 新型太阳能空气源热泵系统及热水制备方法[P]. CN102563973A,2012-07-11.
[76]赵耀华,刁彦华,张楷荣. 一种板状热管及其加工工艺[P]. CN102506597A,2012-06-20.
[77]赵耀华,刁彦华,张楷荣. 一种板状热管及其加工工艺[P]. CN101709929B,2012-05-30.
[78]刁彦华,赵耀华,于雯静. 多孔材料太阳能空气集热装置[P]. CN101846404B,2012-05-30.
[79]赵耀华,张楷荣,刁彦华. 用于LED及大功率散热器件的散热器[P]. CN101515572B,2012-04-18.
[80]赵耀华,张楷荣. 笔记本电脑散热系统及高效散热的笔记本电脑[P]. CN201965530U,2011-09-07.
[81]赵耀华,张楷荣,刁彦华. 太阳能光伏电池高效散热装置及热电联供系统[P]. CN101764167B,2011-08-24.
[82]赵耀华,刁彦华,张楷荣. 新型平板式太阳能集热方法及其集热器[P]. CN101319823B,2011-08-17.
[83]赵耀华,张楷荣. 笔记本电脑散热方法和散热系统及高效散热的笔记本电脑[P]. CN102156521A,2011-08-17.
[84]赵耀华,刁彦华,张楷荣. 一种用于电子器件冷却的平板热管及其加工工艺[P]. CN101363696B,2011-07-20.
[85]赵耀华,刁彦华,张楷荣. 新型微电子器件散热器[P]. CN101510533B,2011-06-15.
[86]赵耀华. 大型空调制冷机的回风预冷换热系统[P]. CN201852257U,2011-06-01.
[87]赵耀华,刁彦华,张楷荣. 一种新型太阳能热水系统[P]. CN101504197B,2011-05-18.
[88]赵耀华,张楷荣. 笔记本电脑及便携式小型发热机器的外置散热器[P]. CN201837956U,2011-05-18.
[89]赵耀华,刁彦华,张楷荣. 光伏电池散热装置[P]. CN101414644B,2011-05-11.
[90]赵耀华. 大型空调制冷机的回风预冷换热系统[P]. CN101984303A,2011-03-09.
[91]刁彦华,赵耀华,于雯静. 多孔材料太阳能空气集热装置[P]. CN201731654U,2011-02-02.
[92]赵耀华,张楷荣. 半导体温差发电装置[P]. CN201717812U,2011-01-19.
[93]赵耀华,张楷荣,刁彦华. 太阳能光伏电池高效散热装置及电池板、热电联供系统、板管式换热器[P]. CN201655823U,2010-11-24.
[94]赵耀华,张楷荣. 半导体温差发电装置[P]. CN101882902A,2010-11-10.
[95]赵耀华,刁彦华,张楷荣. 一种具有层列微槽微热管群的新型平板热管[P]. CN101493296B,2010-10-06.
[96]赵耀华. 平板热管采暖系统[P]. CN201599863U,2010-10-06.
[97]赵耀华. 半导体制冷除湿器[P]. CN201599886U,2010-10-06.
[98]刁彦华,赵耀华,于雯静. 多孔材料太阳能空气集热装置[P]. CN101846404A,2010-09-29.
[99]刁彦华,赵耀华,王樱,于雯静. 一种EHD强化的微型散热装置[P]. CN101252822B,2010-09-15.
[100]赵耀华,陈苏红,刘道川. 一种板式太阳能集热器及集热系统以及加工工艺[P]. CN101430141B,2010-08-11.
[101]赵耀华,刁彦华,张楷荣. 新型平板热管[P]. CN201548107U,2010-08-11.
[102]赵耀华,张楷荣,刁彦华. 太阳能光伏电池高效散热装置及热电联供系统[P]. CN101764167A,2010-06-30.
[103]赵耀华,李光明. 一种高效散热动力电池、电动车温控系统及电动车[P]. CN101764249A,2010-06-30.
[104]赵耀华,张楷荣,刁彦华. 具有多层微孔管阵列的三维平板热管及其加工工艺[P]. CN101738118A,2010-06-16.
[105]赵耀华,刁彦华,张楷荣. 一种板状热管及其加工工艺[P]. CN101709929A,2010-05-19.
[106]赵耀华,刁彦华,张楷荣. 光伏电池散热及热电联供系统[P]. CN201349013,2009-11-18.
[107]赵耀华,张楷荣,刁彦华. 新型LED及大功率散热器件散热器[P]. CN101515572,2009-08-26.
[108]赵耀华,刁彦华,张楷荣. 新型微电子器件散热器[P]. CN101510533,2009-08-19.
[109]赵耀华,刁彦华,张楷荣. 一种新型太阳能热水系统[P]. CN101504197,2009-08-12.
[110]赵耀华,张楷荣,刁彦华. 一种改进的平板式太阳能集热方法及其集热器和热水系统[P]. CN101504198,2009-08-12.
[111]赵耀华,刁彦华,张楷荣. 一种具有层列微槽微热管群的新型平板热管[P]. CN101493296,2009-07-29.
[112]胡学功,赵耀华. 一种远程被动式循环相变散热方法和散热系统[P]. CN100506004C,2009-06-24.
[113]赵耀华,刁彦华,张楷荣. 新型平板式太阳能集热器[P]. CN201259336,2009-06-17.
[114]赵耀华,刁彦华. 一种具有蓄热功能的电力烘烤箱[P]. CN201242331,2009-05-20.
[115]赵耀华,陈苏红,刘道川. 一种板式太阳能集热器及集热系统以及加工工艺[P]. CN101430141,2009-05-13.
[116]赵耀华,刁彦华,张楷荣. 光伏电池散热装置[P]. CN101414644,2009-04-22.
[117]赵耀华,刁彦华,张楷荣. 一种板状热管及其加工工艺[P]. CN101403578,2009-04-08.
[118]赵耀华,刁彦华,王樱,于雯静. 高性能电子器件散热装置[P]. CN201210781,2009-03-18.
[119]刁彦华,赵耀华. 一种电场强化的电子器件散热装置[P]. CN201210782,2009-03-18.
[120]赵耀华,刁彦华,张楷荣. 一种用于电子器件冷却的平板热管及其加工工艺[P]. CN101363696,2009-02-11.
[121]赵耀华,刁彦华. 蓄热型电力烘烤箱[P]. CN101329137,2008-12-24.
[122]赵耀华,刁彦华,张楷荣. 新型平板式太阳能集热方法及其集热器[P]. CN101319823,2008-12-10.
[123]赵耀华,刁彦华. 一种新型热回收装置[P]. CN201155837,2008-11-26.
[124]刁彦华,赵耀华,王樱,于雯静. 一种EHD强化的微型散热装置[P]. CN101252822,2008-08-27.
[125]赵耀华. 一种高性能被动式相变散热系统及其应用[P]. CN100401508C,2008-07-09.
[126]赵耀华,刁彦华. 无动力式空气热回收装置[P]. CN101169280,2008-04-30.
[127]赵耀华,张春平,刘志刚. 腔式吸热器[P]. CN100340821C,2007-10-03.
[128]胡学功,赵耀华. 一种远程被动式循环相变散热方法和散热系统[P]. CN1929727,2007-03-14.
[129]胡学功,赵耀华. 自然空冷式被动循环微槽群相变散热系统[P]. CN2834120,2006-11-01.
[130]胡学功,赵耀华. 一种异地强制液冷式微槽群相变散热系统[P]. CN2834121,2006-11-01.
[131]胡学功,赵耀华. 一种异地风冷式微槽群相变散热系统[P]. CN2834122,2006-11-01.
[132]赵耀华. 一种高性能被动式相变散热系统及其应用[P]. CN1767181,2006-05-03.
[133]赵耀华,张春平,刘志刚. 腔式吸热器[P]. CN1641288,2005-07-20.
[134]赵耀华,张春平,刘志刚. 腔式吸热器[P]. CN2679593,2005-02-16.
[135]赵耀华,胡学功. 微槽群蒸发冷却方法及其装置[P]. CN1482523,2004-03-17.
[136]赵耀华,胡学功. 微槽群蒸发冷却装置[P]. CN2567651,2003-08-20.
论文专著:
先后发表学术论文140余篇,其中SCI、EI收录的有40余篇。
发表部分英文期刊论文:
[1]Diao, Y. H.*; Yin, L. L.; Wang, Z. Y.; Zhao, Y. H.; Liang, L.; Bai, F. W. Numerical analysis of heat transfer characteristics for air in a latent heat thermal energy storage using flat miniature heat pipe arrays .Applied Thermal Engineering, 2019, 162: UNSP 114247.
[2]Sun Zhifeng; Zhao Yaohua; Xu Wei; Wang Dongxu*; Li Huiyong; Zhang Xinyu; Li Huai; Li Yang.Cold Storage Capacity for Solar Air-Conditioning in Office Buildings in Different Climates .Journal of Thermal Science, 2019, 28(6): 1195-1204.
[3]Chen, C Q; Diao, Y H*; Zhao, Y H; Ji, W H; Wang, Z Y; Liang, L.Thermal performance of a thermal-storage unit by using a multichannel flat tube and rectangular fins .Applied Energy, 2019, 250: 1280-1291.
[4]Wang, Zeyu; Diao, Yanhua*; Zhao, Yaohua; Chen, Chuanqi; Liang, Lin; Wang, Tengyue.Thermal performance investigation of an integrated collector-storage solar air heater on the basis of lap joint-type flat micro-heat pipe arrays: Simultaneous charging and discharging mode .Energy, 2019, 181: 882-896.
[5]Wang, Teng yue; Zhao, Yao hua*; Diao, Yan hua; Ren, Ru yang; Wang, Ze yu.Performance of a new type of solar air collector with transparent-vacuum glass tube based on micro-heat pipe arrays .Energy, 2019, 177: 16-28.
[6]Sun, Qin; Diao, Yanhua; Zhao, Yaohua*; Tang, Sheng; Zhang, Ji; Wang, Zeyu.Developing Convective Heat Transfer in Multiport Microchannel Flat Tubes .Journal of Heat Transfer-Transactions of the ASME, 2019, 141(6): 062401.
[7]Wang, Zeyu; Diao, Yanhua*; Zhao, Yaohua; Yin, Lili; Chen, Chuanqi; Liang, Lin; Wang, Tengyue.Performance investigation of an integrated collector-storage solar water heater based on lap-joint-type micro-heat pipe arrays .Applied Thermal Engineering, 2019, 153: 808-827.
[8]Yang, Jingang*; Zhao, Yaohua; Chen, Aoxue; Quan, Zhenhua.Thermal Performance of a Low-Temperature Heat Exchanger Using a Micro Heat Pipe Array .Energies, 2019, 12(4): 675.
[9]Wang, Gang; Quan, Zhenhua*; Zhao, Yaohua; Wang, Hongyan.Performance of a flat-plate micro heat pipe at different filling ratios and working fluids .Applied Thermal Engineering, 2019, 146: 459-468.
[10]Diao, Y H; Liang, L; Zhao, Y H*; Wang, Z Y; Bai, F W.Numerical investigation of the thermal performance enhancement of latent heat thermal energy storage using longitudinal rectangular fins and flat micro-heat pipe arrays .Applied Energy, 2019, 233: 894-905.
[11]Ye Xin*; Zhao Yaohua; Quan Zhenhua.Experimental study on heat dissipation for lithium-ion battery based on micro heat pipe array (MHPA) .Applied Thermal Engineering, 2018, 130: 74-82.
[12]Ye Xin*; Zhao Yaohua; Quan Zhenhua.Thermal management system of lithium-ion battery module based on micro heat pipe array .International Journal of Energy Research, 2018, 42(2): 648-655.
[13]Wang Z Y; Diao Y H*; Liang L; Zhao Y H; Zhu T T; Bai F W.Experimental study on an integrated collector storage solar air heater based on flat micro-heat pipe arrays .Energy and Buildings, 2017, 152: 615-628.
[14]Diao Y H; Liang L; Kang Y M; Zhao Y H; Wang Z Y; Zhu T T.Experimental study on the heat recovery characteristic of a heat exchanger based on a flat micro-heat pipe array for the ventilation of residential buildings .Energy and Buildings, 2017, 152: 448-457.
[15]Zhu T T; Diao Y H; Zhao Y H*; Ma C; Wang T Y; Liu J.A Comparative Investigation of Two Types of MHPA Flat-Plate Solar Air Collector Based on Exergy Analysis .Journal of Solar Energy Engineering-Transactions of the ASME, 2017, 139(5): 051011.
[16]Liu J; Diao Y H*; Zhao Y H; Li F F; Zhu T T.Heat Transfer Properties of a Latent Thermal Storage Unit with Flat Microheat Pipe Arrays .Journal of Energy Engineering, 2017, 143(5): 04017048.
[17]Liu J; Diao Y H*; Zhao Y H; Li F F; Zhu T T.Heat Transfer Properties of a Latent Thermal Storage Unit with Flat Microheat Pipe Arrays .Journal of Energy Engineering, 2017, 143(5): 04017048.
[18]Wang Teng yue; Diao Yan hua*; Zhu Ting ting; Zhao Yao hua; Liu Jing; Wei Xiang qian.Thermal performance of solar air collection-storage system with phase change material based on flat micro-heat pipe arrays .Energy Conversion and Management, 2017, 142: 230-243.
[19]Zhu Tingting; Diao Yanhua*; Zhao Yaohua; Ma Cheng.Performance evaluation of a novel flat-plate solar air collector with micro-heat pipe arrays (MHPA) .Applied Thermal Engineering, 2017, 118: 1-16.
[20]Zhang, Ji; Diao, Yanhua*; Zhao, Yaohua; Zhang, Yanni.An experimental investigation of heat transfer enhancement in minichannel: Combination of nanofluid and micro fin structure techniques .Experimental Thermal and Fluid Science, 2017, 81: 21-32.
[21]Zhu Ting ting; Zhao Yao hua*; Diao Yan hua; Li Feng fei; Quan Zhen hua.Experimental investigation and performance evaluation of a vacuum tube solar air collector based on micro heat pipe arrays .Journal of Cleaner Production, 2017, 142: 3517-3526.
[22]Diao Y H*; Li C Z; Zhang J; Zhao Y H; Kang Y M.Experimental investigation of MWCNT-water nanofluids flow and convective heat transfer characteristics in multiport minichannels with smooth/micro-fin surface .Powder Technology, 2017, 305: 206-216.
[23]Diao Y H*; Wang S; Li C Z; Zhao Y H; Zhu T T.Experimental study on the heat transfer characteristics of a new type flat micro heat pipe heat exchanger with latent heat thermal energy storage .Experimental Heat Transfer, 2017, 30(2): 91-111.
[24]Sun Zhifeng; Zhao Yaohua; Xu Wei; Zhang Xinyu; Li Huai; Wang Min; He Tao; Wang Dongxu.A Solar Heating and Cooling System in a Nearly Zero-Energy Building: A Case Study in China .International Journal of Photoenergy, 2017, 2017: 2053146.
[25]Hou Longshu; Quan Zhenhua*; Zhao Yaohua; Wang Lincheng; Wang Gang.An experimental and simulative study on a novel photovoltaic-thermal collector with micro heat pipe array (MHPA-PV/T) .Energy and Buildings, 2016, 124: 60-69.
[26]Zhu Ting Ting; Diao Yan Hua*; Zhao Yao Hua; Li Feng Fei.Thermal performance of a new CPC solar air collector with flat micro-heat pipe arrays .Applied Thermal Engineering, 2016, 98: 1201-1213.
[27]Li Feng fei; Diao Yan hua; Zhao Yao hua; Zhu Ting ting; Liu Jing.Experimental study on the thermal performance of a new type of thermal energy storage based on flat micro-heat pipe array .Energy Conversion and Management, 2016, 112: 395-403.
[28]Zhang Ji; Diao Yanhua*; Zhao Yaohua; Zhang Yanni.Thermal-Hydraulic Performance of SiC-Water and Al2O3-Water Nanofluids in the Minichannel .Journal of Heat Transfer-Transactions of the ASME, 2016, 138(2): 021705.
[29]Li S C; Wang W*; Zhao Y H; Dong X G.A NEW SEMIEMPIRICAL MODEL FOR THE MAXIMUM TEMPERATURE UNDER THE CEILING IN URBAN TRAFFIC LINK TUNNEL FIRES .Heat Transfer Research, 2016, 47(11): 989-1011.
[30]Wang Gang; Quan Zhenhua*; Zhao Yaohua; Sun Chenming; Deng Yuechao; Tong Jiannan.Experimental study on a novel PV/T air dual-heat-source composite heat pump hot water system .Energy and Buildings, 2015, 108: 175-184.
[31]Deng Yuechao; Quan Zhenhua; Zhao Yaohua; Wang Lincheng; Liu Zhongliang.Experimental research on the performance of household-type photovoltaic-thermal system based on micro-heat-pipe array in Beijing .Energy Conversion and Management, 2015, 106: 1039-1047.
[32]Diao Y H*; Wang S; Zhao Y H; Zhu T T; Li C Z; Li F F.Experimental study of the heat transfer characteristics of a new-type flat micro-heat pipe thermal storage unit .Applied Thermal Engineering, 2015, 89: 871-882.
[33]Diao Y H*; Li C Z; Zhao Y H; Liu Y; Wang S.Experimental investigation on the pool boiling characteristics and critical heat flux of Cu-R141b nanorefrigerant under atmospheric pressure .International Journal of Heat and Mass Transfer, 2015, 89: 110-115.
[34]Zhang Ji; Zhao Yaohua*; Diao Yanhua; Zhang Yanni.An experimental study on fluid flow and heat transfer in a multiport minichannel flat tube with micro-fin structures .International Journal of Heat and Mass Transfer, 2015, 84: 511-520.
[35]Zhu Ting ting; Diao Yan hua*; Zhao Yao hua; Deng Yue chao.Experimental study on the thermal performance and pressure drop of a solar air collector based on flat micro-heat pipe arrays .Energy Conversion and Management, 2015, 94: 447-457.
[36]Diao Y H*; Liu Y; Zhang J; Guo L; Zhao Y H; Wang S.Effect of electric field on the enhanced heat transfer characteristic of an evaporator with multilayered sintered copper mesh .Journal of Electrostatics, 2015, 73: 26-32.
[37]Deng Yuechao; Zhao Yaohua*; Quan Zhenhua; Zhu Tingting.Experimental study of the thermal performance for the novel flat plate solar water heater with micro heat pipe array absorber .3rd International Conference on Solar Heating and Cooling for Buildings and Industry (SHC), 2014-10-13 to 2014-10-15.
[38]Wang Lincheng; Zhao Yaohua*; Quan Zhenhua; Gan Hongyu; Jing Heran.Simulation study on household forced circulation photovoltaic thermal system based on micro heat pipe array .3rd International Conference on Solar Heating and Cooling for Buildings and Industry (SHC), 2014-10-13 to 2014-10-15.
[39]Zhu Ting ting; Zhao Yao hua*; Diao Yan hua; Li Feng fei; Deng Yue chao.Experimental investigation on the performance of a novel solar air heater based on flat micro-heat pipe arrays (FMHPA) .3rd International Conference on Solar Heating and Cooling for Buildings and Industry (SHC), 2014-10-13 to 2014-10-15.
[40]Wang Gang; Quan Zhenhua*; Zhao Yaohua; Xu Peng; Sun Chenming.Experimental study of a novel PV/T-air composite heat pump hot water system .3rd International Conference on Solar Heating and Cooling for Buildings and Industry (SHC), 2014-10-13 to 2014-10-15.
[41]Wang Gang; Quan Zhenhua*; Zhao Yaohua; Sun Chenming; Tong Jiannan.Performance studies on a novel solar PV/T-air dual heat source heat pump system .9th International Symposium on Heating Ventilation and Air Conditioning ISHVAC Joint with the 3rd International Conference on Building Energy and Environment COBEE, 2015-07-12 to 2015-07-15.
[42]Liu Huimin*; Wang Wei; Zhao Yaohua; Deng Yuechao.Field study of the performance for a solar water heating system with MHPA-FPCs .3rd International Conference on Solar Heating and Cooling for Buildings and Industry (SHC), 2014-10-13 to 2014-10-15.
[43]Zhang Ji; Diao Yanhua*; Zhao Yaohua; Zhang Yanni.Experimental study of TiO2-water nanofluid flow and heat transfer characteristics in a multiport minichannel flat tube .International Journal of Heat and Mass Transfer, 2014, 79: 628-638.
[44]Diao Y H*; Guo L; Liu Y; Zhao Y H; Wang S.Electric field effect on the bubble behavior and enhanced heat-transfer characteristic of a surface with rectangular microgrooves .International Journal of Heat and Mass Transfer, 2014, 78: 371-379.
[45]Diao Y H*; Guo L; Liu Y; Zhao Y H; Wang S.Electric field effect on the bubble behavior and enhanced heat-transfer characteristic of a surface with rectangular microgrooves .International Journal of Heat and Mass Transfer, 2014, 78: 371-379.
[46]Diao Yanhua*; Zhang Ji; Yu Wenjing; Zhao Yaohua.Experimental study on the heat recovery characteristic of a plate heat pipe heat exchanger in room ventilation .HVAC&R Research, 2014, 20(7): 828-835.
[47]Zhang Ji; Diao Yanhua*; Zhao Yaohua; Zhang Yanni; Sun Qin.Thermal-hydraulic performance of multiport microchannel flat tube with a sawtooth fin structure .International Journal of Thermal Sciences, 2014, 84: 175-183.
[48]Diao Yanhua*; Liu Yan; Wang Rui; Zhao Yaohua; Guo Lei.Experimental investigation of the Cu/R141b nanofluids on the evaporation/boiling heat transfer characteristics for surface with capillary micro-channels .Heat and Mass Transfer, 2014, 50(9): 1261-1274.
[49]Diao Y H*; Liu Y; Zhao Y H; Wang S.Evaporation/Boiling Heat Transfer Performance in a Sintered Copper Mesh Structure .Journal of Heat Transfer-Transactions of the ASME, 2014, 136(8): 081502.
[50]Zhang J; Diao Y H*; Zhao Y H; Zhang Y N.An experimental study of the characteristics of fluid flow and heat transfer in the multiport microchannel flat tube .Applied Thermal Engineering, 2014, 65(1-2): 209-218.
[51]Tang Xiao; Zhao Yao Hua*; Diao Yan hua.Experimental investigation of the nucleate pool boiling heat transfer characteristics of delta-Al2O3-R141b nanofluids on a horizontal plate .Experimental Thermal and Fluid Science, 2014, 52: 88-96.
[52]Diao Y H*; Liu Y; Wang R; Zhao Y H; Guo L; Tang X.Effects of nanofluids and nanocoatings on the thermal performance of an evaporator with rectangular microchannels .International Journal of Heat and Mass Transfer, 2013, 67: 183-193.
[53]Zhang J; Diao Y H*; Zhao Y H; Tang X; Yu W J; Wang S.Experimental study on the heat recovery characteristics of a new-type flat micro-heat pipe array heat exchanger using nanofluid .Energy Conversion and Management, 2013, 75: 609-616.
[54]Deng Yuechao; Zhao Yaohua*; Wang Wei; Quan Zhenhua; Wang Lincheng; Yu Dan.Experimental investigation of performance for the novel flat plate solar collector with micro-channel heat pipe array (MHPA-FPC) .Applied Thermal Engineering, 2013, 54(2): 440-449.
[55]Deng YueChao; Quan ZhenHua*; Zhao YaoHua; Wang LinCheng.Experimental investigations on the heat transfer characteristics of micro heat pipe array applied to flat plate solar collector .SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2013, 56(5): 1177-1185.
[56]Du, Shi-Yuan; Zhao, Yao-Hua*.Numerical study of conjugated heat transfer in evaporating thin-films near the contact line .International Journal of Heat and Mass Transfer, 2012, 55(1-3): 61-68.
[57]Li, Ningjun*; Quan, Zhenhua; Zhao, Yaohua; Guo, Nana.The Experimental Study of New-Type Water-Cooling PV/T Collector .4th International Conference on Technology of Architecture and Structure (ICTAS 2011), 2011-09-22 to 2011-09-24.
[58]Sun, Yuying*; Zhao, Yaohua; Wang, Yingjie; Hu, Yanting; Ni, Yongfeng.Control Strategies on Yalong Bay Ice Storage District Cooling System .International Conference on Materials Science and Information Technology (MSIT 2011), 2011-09-16 to 2011-09-18.
[59]Du, Shi-Yuan; Zhao, Yao-Hua*.New boundary conditions for the evaporating thin-film model in a rectangular micro channel .International Journal of Heat and Mass Transfer, 2011, 54(15-16): 3694-3701.
[60]Hua, G. Y.; Wang, W.*; Zhao, Y. H.; Li, L. A study of an optimal smoke control strategy for an Urban Traffic Link Tunnel fire .Tunnelling and Underground Space Technology, 2011, 26(2): 336-344.
[61]Liu J*; Zhao Y; Jiang Y J; Lee C M; Liu Y L; Siu G G.Identification of zinc and oxygen vacancy states in nonpolar ZnO single crystal using polarized photoluminescence .Applied Physics Letters, 2010, 97(23): 231907.
[62]Xiao, J.; Wang, W.; Guo, Q. C.; Zhao, Y. H..An experimental study of the correlation for predicting the frost height in applying the photoelectric technology .International Journal of Refrigeration, 2010, 33(5): 1006-1014.
[63]Yu, Wen-Jing*; Diao, Yan-Hua; Zhao, Yao-Hua.EXPERIMENTAL INVESTIGATION ON THE PLATE HEAT PIPE HEAT EXCHANGER FOR HEAT RECOVERY CHARACTERISTIC IN ROOM VENTILATION .
14th International Heat Transfer Conference, 2010-08-08 to 2010-08-13.
[64]Zhao, Yao-Hua*; Zou, Fei-Long; Diao, Yan-Hua; Quan, Zhen-Hua.EXPERIMENTAL INVESTIGATION OF A NEW FLAT PLATE SOLAR HEAT COLLECTOR BY MICRO HEAT PIPE ARRAY .14th International Heat Transfer Conference, 2010-08-08 to 2010-08-13.
[65]Xiao, J.; Wang, W.; Zhao, Y. H.; Zhang, F. R..An analysis of the feasibility and characteristics of photoelectric technique applied in defrost-control .International Journal of Refrigeration, 2009, 32(6): 1350-1357.
[66]Diao, Y. H.; Liu, J. R.; Wang, Y.; Zhao, Y. H..An Experimental Investigation on Heat Transfer Characteristics for Micro-Capillary Evaporator .Experimental Heat Transfer, 2009, 22(2): 87-98.
[67]He, Kaiyuan; Fan, Hongming; Wang, Feng; Zhao, Yaohua; Yin, Zhifang.NUMERICAL PREDICTION OF AIR DISTRIBUTION OF VENTILATION AND AIR-CONDITIONING IN A SUBWAY TRANSFER STATION .5th International Workshop on Energy and Environment of Residential Buildings/3rd International Conference on Built Environment and Public Health, 2009-05-29 to 2009-05-31.
[68]Hua, Gaoying; Wang, Wei; Zhao, Yaohua; Li, Lei.Study on smoke evacuation strategy in an Urban Traffic Link Tunnel fire .1st International Conference on Building Energy and Environment (COBEE 2008), 2008-07-13 to 2008-07-16.
[69]Hua Gaoying; Wang Wei; Zhao Yaohua; Li Lei.Numerical Study on Smoke Control in Urban Traffic Link Tunnel Fires .International Symposium on Safety Science and Technology, 2008-09-24 to 2008-09-27.
[70]Diao, Yan-Hua; Zhao, Yao-Hua; Wang, Qiu-Liang.Photographic study of bubble dynamics for pool boiling of refrigerant R11 .Heat and Mass Transfer, 2007, 43(9): 935-947.
[71]Liu, Zhigang; Zhao, Yaohua; Takei, Masahiro.Experimental study on axial wall heat conduction for convective heat transfer in stainless steel microtube .Heat and Mass Transfer, 2007, 43(6): 587-594.
[72]Diao, Y. H.; Zhao, Y. H.; Wang, Q. L..Photographic study of bubble behaviors for saturated pool boiling of binary refrigerant mixture R141B-R113 .Experimental Heat Transfer, 2006, 19(4): 309-325.
[73]Shen, Fang; Tan, Wenchang; Zhao, Yaohua; Masuoka, Takashi.The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model .Nonlinear Analysis: Real World Applications , 2006, 7(5): 1072-1080.
[74]Diao, YH; Zhao, YH; Wang, QL.Visualization of bubble dynamics for pool boiling of binary refrigerant mixture R11-R113 .Chinese Journal of Chemical Engineering, 2006, 14(2): 149-157.
发表中文期刊论文:
[1]娄晓莹,全贞花,杜伯尧,赵耀华,邵思博,王伟.太阳能-空气能双源直膨式热泵系统夏季冷热电性能研究[J].制冷学报,2022,43(03):133-141.
[2]赵耀华,鲁啸山,刁彦华,王泽宇,陈传奇.复合抛物面聚光式太阳能空气集蓄热一体化系统性能研究[J].北京工业大学学报,2022,48(07):750-761.
[3]全贞花,任海波,赵耀华,王林成,石峻璋.不同气候条件下BIPVT建筑供能系统节能特性分析[J].北京工业大学学报,2022,48(03):209-219.
[4]侯隆澍,全贞花,杜伯尧,赵耀华,娄晓莹.新型太阳能-空气双热源直膨热泵系统运行性能研究[J].建筑科学,2022,38(02):153-159.DOI:10.13614/j.cnki.11-1962/tu.2022.02.22.
[5]王林成,全贞花,赵耀华,靖赫然,任海波,杜伯尧.香菇菌棒灭菌乏汽余热回收供热系统性能分析[J].农业工程学报,2022,38(01):248-257.
[6]王宇波,全贞花,靖赫然,王林成,赵耀华.多能互补协同蓄能建筑供能系统性能研究与评价[J].建筑科学,2021,37(12):56-61+110.DOI:10.13614/j.cnki.11-1962/tu.2021.12.09.
[7]任海波,全贞花,王林成,王兆萌,赵耀华.新型BIPVT超低能耗建筑节能特性研究[J].建筑科学,2021,37(10):103-109+137.DOI:10.13614/j.cnki.11-1962/tu.2021.10.14.
[8]李海泽,全贞花,董瑞雪,刘昀晗,赵耀华.基于微热管阵列的地板辐射供暖模拟研究[J].建筑科学,2021,37(10):132-137.DOI:10.13614/j.cnki.11-1962/tu.2021.10.18.
[9]陈传奇,刁彦华,赵耀华,王泽宇,梁林,庞铭鑫.空气-多孔道扁管相变蓄热装置换热性能研究[J].工程热物理学报,2021,42(03):724-731.
[10]王宇波,全贞花,靖赫然,王林成,赵耀华.多能互补协同蓄能系统热力学分析与运行优化[J].化工学报,2021,72(05):2474-2483+2906.
[11]侯隆澍,全贞花,杜伯尧,赵耀华,江波.太阳能-空气双热源热泵系统性能实验[J].化工学报,2020,71(12):5498-5505.
[12]王兆萌,全贞花,赵耀华,许子寰,刘新.风冷式建筑一体化光伏光热组件夏季性能研究[J].建筑科学,2020,36(06):56-63.DOI:10.13614/j.cnki.11-1962/tu.2020.06.08.
[13]陈然,全贞花,赵耀华,唐晟.基于平行流扁管吸附式制冷系统性能实验研究[J].工程热物理学报,2020,41(04):981-988.
[14]靖赫然,全贞花,赵耀华,王宇波,娄晓莹.数据机房基于平板微热管阵列的自然冷能换热器性能研究[J].建筑科学,2020,36(04):114-122.DOI:10.13614/j.cnki.11-1962/tu.2020.04.17.
[15]刘子初,全贞花,赵耀华,靖赫然,姚孟良,刘新.新型微通道平板热管蓄冰性能[J].化工学报,2020,71(S1):120-128.
[16]杜伯尧,全贞花,侯隆澍,赵耀华,任海波.新型光伏直膨式太阳能/空气能多能互补热泵性能[J].化工学报,2020,71(S1):368-374.
[17]靖赫然,赵耀华,全贞花,王林成.农业基站室外自然冷能微热管阵列式空冷器性能[J].农业工程学报,2020,36(06):179-187.
[18]陈然,全贞花,赵耀华,唐晟.基于平行流铝扁管吸附床传热性能的模拟研究[J].可再生能源,2020,38(03):312-318.DOI:10.13941/j.cnki.21-1469/tk.2020.03.005.
[19]杨金钢,孙炜钰,全贞花,赵耀华.基于微热管阵列的油烟热回收换热器性能研究[J].建筑科学,2019,35(12):49-54.DOI:10.13614/j.cnki.11-1962/tu.2019.12.08.
[20]孙峙峰,赵耀华,徐伟,王东旭,金汐.相变蓄冷技术在公共建筑太阳能空调系统中的应用研究[J].太阳能学报,2019,40(11):3148-3155.
[21]孙乐,蔺洁,赵耀华.基于板式热管的复合容积式换热器的换热性能优化实验研究[J].暖通空调,2019,49(05):129-136.
[22]王岗,赵耀华,全贞花,王宏燕.不同充液率平板热管性能实验[J].化工进展,2019,38(05):2123-2131.DOI:10.16085/j.issn.1000-6613.2018-1520.
[23]季文寒,刁彦华,赵耀华,陈传奇,王泽宇,朱婷婷.改进型微热管平板太阳能空气集热器性能分析[J].新能源进展,2019,7(02):176-183.
[24]徐俊芳,赵耀华,王皆腾,赵会刚,李楠.空气–水双热源复合热泵系统性能试验[J].建筑技术,2019,50(01):16-19.
[25]蔡俊杰,全贞花,王岗,姚孟良,刘新,赵耀华.相变蓄能-热泵多能互补供能系统冬季性能分析[J].化工进展,2018,37(12):4638-4645.DOI:10.16085/j.issn.1000-6613.2018-0716.
[26]梁林,刁彦华,康亚盟,赵耀华,魏向前,陈传奇.平板微热管阵列-泡沫铜复合结构相变蓄热装置蓄放热特性[J].化工学报,2018,69(S1):34-42.
[27]董瑞雪,全贞花,赵耀华,靖赫然,齐明空.基于微热管阵列的地板辐射采暖系统性能实验研究[J].建筑科学,2018,34(08):32-36+81.DOI:10.13614/j.cnki.11-1962/tu.2018.08.05.
[28]唐晟,赵耀华,刁彦华,全贞花.多孔挤压铝扁管电子芯片热沉的热性能研究[J].山东科学,2018,31(03):39-47.
[29]李诚展,刁彦华,张冀,赵耀华,康亚盟,梁林.微翅片扁管中纳米流体的流动换热特性研究[J].工程热物理学报,2018,39(06):1349-1358.
[30]唐晟,赵耀华,刁彦华,全贞花.基于BOBYQA算法的微小通道热沉优化设计[J].北京工业大学学报,2018,44(06):940-947.
[31]佟建南,全贞花,赵耀华,王岗,蔡俊杰.太阳能与空气源双蒸发器热泵复合供能系统性能实验研究[J].建筑科学,2018,34(04):58-65.DOI:10.13614/j.cnki.11-1962/tu.2018.04.10.
[32]叶欣,赵耀华,全贞花,王岗,刘鸿德,迟远英.微热管阵列应用于锂电池模块的散热实验[J].工程科学学报,2018,40(01):120-126.DOI:10.13374/j.issn2095-9389.2018.01.015.
[33]徐俊芳,赵耀华,全贞花,王会粉,赵会刚,王皆腾.新型空气-水双热源复合热泵系统除霜特性及能耗[J].化工学报,2018,69(06):2646-2654.
[34]梁佳男,赵耀华,全贞花,叶欣,迟远英.基于微热管阵列锂电池的低温加热性能[J].化工进展,2017,36(11):4030-4036.DOI:10.16085/j.issn.1000-6613.2017-0385.
[35]王腾月,刁彦华,赵耀华,朱婷婷,魏向前,白凤武.微热管阵列式太阳能空气集热-蓄热系统性能试验[J].农业工程学报,2017,33(18):148-156.
[36]徐俊芳,赵耀华,王皆腾,赵会刚,梁元元.新型空气-水双热源复合热泵系统性能和除霜实验[J].化工学报,2017,68(11):4301-4308.
[37]刘鸿德,全贞花,赵耀华,迟远英,靖赫然,姚孟良.新型热管平板太阳能热水器性能研究[J].建筑科学,2017,33(06):48-54+61.DOI:10.13614/j.cnki.11-1962/tu.2017.06.08.
[38]叶欣,赵耀华,全贞花.电动汽车锂离子电池散热加热设计[J].北京工业大学学报,2017,43(08):1263-1267.
[39]赵耀华,孙钦,刁彦华,唐晟.多孔微通道扁管发展段流动换热特性实验研究[J].北京工业大学学报,2017,43(05):793-800.
[40]王泽宇,刁彦华,赵耀华,梁林,朱婷婷,樊洪明,白凤武.平板微热管阵列式太阳能空气集热-蓄热一体化装置换热特性研究[J].工程热物理学报,2017,38(03):625-634.
[41]王岗,全贞花,赵耀华,靖赫然,佟建南.太阳能-热泵复合供能系统[J].化工学报,2017,68(05):2132-2139.
[42]刁彦华,汪顺,赵耀华,李诚展,朱婷婷,康亚盟.平板微热管阵列相变蓄热装置蓄/放热性能[J].北京工业大学学报,2016,42(10):1552-1559.
[43]康亚盟,刁彦华,赵耀华,汪顺.纳米复合相变蓄热材料的制备与特性[J].化工学报,2016,67(S1):372-378.
[44]李凤飞,刁彦华,赵耀华,朱婷婷,刘婧.平板微热管式相变蓄热装置蓄放热特性研究[J].工程热物理学报,2016,37(06):1253-1260.
[45]李思成,夏勇,王伟,赵耀华.射流风机与火源距离对地下环形隧道烟气流动的影响研究[J].消防科学与技术,2016,35(06):766-769.
[46]朱婷婷,刁彦华,赵耀华,马骋,李凤飞.微热管阵列式太阳能平板空气集热器集热性能[J].农业工程学报,2016,32(11):250-257.
[47]李思成,王伟,赵耀华.UTLT烟气回流与限制速度的模型[J].北京工业大学学报,2016,42(06):893-901.
[48]徐俊芳,李越铭,王皆腾,赵耀华.太阳能集中供热水系统运行的经济性分析[J].建筑技术,2015,46(11):983-986.DOI:10.13731/j.issn.1000-4726.2015.11.005.
[49]朱婷婷,刁彦华,赵耀华,李凤飞,邓月超.平板微热管阵列-CPC太阳能空气集热器集热特性[J].工程热物理学报,2015,36(11):2471-2476.
[50]甘荭煜,全贞花,赵耀华,邓月超.新型光伏光热幕墙组件性能特性研究[J].建筑科学,2015,31(08):127-132.DOI:10.13614/j.cnki.11-1962/tu.2015.08.020.
[51]刘慧敏,孙育英,王伟,赵耀华,邓月超.基于MHPA-FPC的太阳能热水工程实际运行性能测评研究[J].建筑科学,2015,31(08):115-121.DOI:10.13614/j.cnki.11-1962/tu.2015.08.018.
[52]赵耀华,张艳妮,刁彦华,张冀.SiC-水纳米流体在微小通道中的流动和换热特性[J].北京工业大学学报,2015,41(07):1085-1092.
[53]徐鹏,全贞花,赵耀华,孙晨明,王岗.新型太阳能光伏—热泵复合建筑供能系统及其性能实验研究[J].建筑科学,2015,31(06):99-105.DOI:10.13614/j.cnki.11-1962/tu.2015.06.018.
[54]张冀,刁彦华,赵耀华,张艳妮,孙钦.小通道平行流扁管内纳米流体的流动换热特性研究[J].工程热物理学报,2015,36(05):1071-1076.
[55]朱婷婷,刁彦华,赵耀华,邓月超.基于平板微热管阵列的新型太阳能空气集热器热性能及阻力特性研究[J].太阳能学报,2015,36(04):963-970.
[56]朱婷婷,刁彦华,赵耀华,邓月超.基于平板微热管阵列的新型太阳能空气集热器集热特性的研究[J].山东科学,2015,28(02):39-46.
[57]王林成,全贞花,赵耀华,邓月超,王岗.微热管阵列光伏光热组件瞬时效率实验研究[J].太阳能学报,2015,36(03):539-545.
[58]邓月超,赵耀华,全贞花,刘中良.微热管阵列平板太阳能集热器中空保温层厚度优化[J].农业工程学报,2015,31(05):268-274.
[59]刁彦华,汪顺,郭磊,刘岩,赵耀华.电场强化微槽道结构蒸发器传热特性的实验研究[J].北京工业大学学报,2014,40(11):1707-1711.
[60]李思成,王伟,赵耀华,董兴国.几个典型隧道火灾问题研究进展[J].建筑科学,2014,30(10):94-105.DOI:10.13614/j.cnki.11-1962/tu.2014.10.018.
[61]邓月超,赵耀华,王林成,叶三宝.微热管阵列平板太阳集热器的数值模拟与优化[J].太阳能学报,2014,35(09):1646-1652.
[62]王颖盈,刁彦华,赵耀华,王林成.平板微热管阵列应用于锂电池组的散热特性[J].电源技术,2014,38(08):1433-1436+1582.
[63]刘岩,刁彦华,赵耀华,王瑞,汪顺,储顺周.烧结丝网结构蒸发器内传热特性实验研究[J].工程热物理学报,2014,35(08):1595-1601.
[64]叶三宝,刁彦华,赵耀华.新型平板热管相变蓄热器蓄放热性能分析[J].电力建设,2014,35(07):136-140.
[65]全贞花,李炎锋,潘嵩,简毅文,赵耀华.《太阳能利用与建筑节能》课程建设与探讨[J].教育教学论坛,2014(19):222-223.
[66]侯隆澍,王伟,赵耀华,全贞花,王岗.新型太阳能-空气复合热源热泵热水系统实验研究[J].建筑科学,2014,30(04):1-4+30.DOI:10.13614/j.cnki.11-1962/tu.2014.04.001.
[67]郭磊,刁彦华,赵耀华,刘岩,汪顺.电场强化微槽道结构毛细芯蒸发器的传热特性[J].化工学报,2014,65(S1):144-151.
[68]王宏燕,赵耀华.平板微热管阵列垂直传热的数值分析[J].化工学报,2014,65(02):508-515.
[69]王岗,全贞花,赵耀华,侯隆澍,徐俊芳,邓月超.太阳能-空气复合热源热泵热水系统[J].化工学报,2014,65(03):1033-1039.
[70]李宁军,赵耀华,梁琳,戴旭.新型太阳能光伏光热集热器的实验研究[J].暖通空调,2013,43(S1):272-275.
[71]谢静超,樊洪明,刁彦华,赵耀华.建环专业学生工程实践能力培养探究[J].教育教学论坛,2013(35):212-213.
[72]刁彦华,谢静超,毕月虹,赵耀华.《热质交换原理与设备》课程教学体会[J].教育教学论坛,2013(29):107-108.
[73]孙育英,赵耀华,王伟,贾衡.空调系统运行负荷GRNN预测模型的应用研究[J].北京工业大学学报,2013,39(07):1084-1091.
[74]刁彦华,王瑞,刘岩,赵耀华,郭磊,汪顺.TiO2/R141b纳米流体应用于微槽道结构蒸发器的强化换热特性研究[J].工程热物理学报,2013,34(06):1137-1141.
[75]邓月超,全贞花,赵耀华,王林成,叶三宝.基于微热管阵列的平板太阳能热水器的性能试验[J].农业工程学报,2013,29(04):222-228.
[76]王峰,赵耀华,何开远.地铁十字换乘站火灾烟气控制的数值模拟[J].铁道建筑,2012(12):61-63.
[77]李嘉琪,刁彦华,赵耀华,郭娜娜,张冀.新型平板热管相变换热器储放能过程的研究[J].工程热物理学报,2012,33(11):1932-1935.
[78]邓月超,赵耀华,全贞花,王林成.平板太阳能集热器空气夹层内自然对流换热的数值模拟[J].建筑科学,2012,28(10):84-87+92.DOI:10.13614/j.cnki.11-1962/tu.2012.10.023.
[79]赵耀华,李思成,王伟,董兴国.建筑防排烟系统常见问题探析[J].建筑科学,2012,28(S2):39-43.DOI:10.13614/j.cnki.11-1962/tu.2012.s2.004.
[80]孙育英,赵耀华,王颖杰,倪永峰,王伟.亚龙湾冰蓄冷区域供冷项目自控设计与应用分析[J].建筑科学,2012,28(08):104-108.DOI:10.13614/j.cnki.11-1962/tu.2012.08.020.
[81]王峰,赵耀华,杜世元,王宏燕,胡定科.通信机房用平行微孔群扁管换热器研究[J].建筑科学,2012,28(06):28-30+95.DOI:10.13614/j.cnki.11-1962/tu.2012.06.009.
[82]张冀,刁彦华,赵耀华,于雯静,唐潇.纳米流体应用于平板式热管热回收装置的实验研究[J].建筑科学,2012,28(06):31-35.DOI:10.13614/j.cnki.11-1962/tu.2012.06.010.
[83]王峰,赵耀华,胡定科.地铁隧道活塞风的简化计算[J].铁道建筑,2012(05):41-43.
[84]王瑞,刁彦华,赵耀华,郭磊.多孔结构毛细芯蒸发器传热特性的实验研究[J].工程热物理学报,2012,33(05):843-846.
[85]赵耀华,于雯静,刁彦华,张冀,郝丽敏.新型平板热管换热器热回收特性实验研究[J].北京工业大学学报,2012,38(04):497-501.
[86]王宏燕,邓月超,郝丽敏,赵耀华.平板微热管阵列在LED散热装置中的应用[J].半导体技术,2012,37(03):240-244.
[87]唐潇,刁彦华,赵耀华,张冀.δ-Al2O3-R141b纳米流体的池内核态沸腾传热特性[J].化工学报,2012,63(01):64-70.
[88]于雯静,刁彦华,赵耀华,张冀.新型平板热管换热器热回收效率特性实验研究[J].工程热物理学报,2011,32(11):1921-1924.
[89]李嘉琪,刁彦华,赵耀华.新型平板热管蓄热装置固—液相变过程数值模拟[J].建筑科学,2011,27(10):88-92.DOI:10.13614/j.cnki.11-1962/tu.2011.10.020.
[90]甘甜,王伟,赵耀华,智艳生,王峰,华高英.地铁活塞风Fluent动网格模型的建立与验证[J].建筑科学,2011,27(08):75-81.DOI:10.13614/j.cnki.11-1962/tu.2011.08.004.
[91]杜世元,赵耀华.矩形微槽蒸发薄液膜新边界条件的设定[J].工程热物理学报,2011,32(07):1203-1207.
[92]康晓龙,王伟,赵耀华,孙海峰.城市地下快速通道坡度与风速变化对隧道内人员逃生的影响[J].建筑科学,2011,27(04):100-103.DOI:10.13614/j.cnki.11-1962/tu.2011.04.018.
[93]杜世元,赵耀华.薄液膜蒸发传热影响因素分析[J].化学工程,2011,39(04):54-57+64.
[94]王宏燕,郝丽敏,赵耀华,刁彦华.平板蒸汽腔与微热管阵列组合式传热装置[J].工程热物理学报,2011,32(04):651-654.
[95]赵耀华,王宏燕,刁彦华,王欣悦,邓月超.平板微热管阵列及其传热特性[J].化工学报,2011,62(02):336-343.
[96]华高英,王伟,甘甜,李磊,赵耀华.北京市CBD地下交通联系隧道火灾烟气控制研究[J].暖通空调,2010,40(12):75-79.
[97]赵耀华,邹飞龙,刁彦华.新型平板热管式太阳能集热技术[J].工程热物理学报,2010,31(12):2061-2064.
[98]肖婧,王伟,郭庆慈,路伟鹏,赵耀华.空气源热泵在北京低温环境下运行性能的现场实测研究[J].建筑科学,2010,26(10):242-245.DOI:10.13614/j.cnki.11-1962/tu.2010.10.048.
[99]樊洪明,赵耀华,张丹.地铁区间与车站火灾多功能模型实验平台的研究[J].铁道学报,2010,32(05):88-92.
[100]刘斌,吴玉庭,马重芳,赵耀华.圆管内熔融盐强迫对流换热的实验研究[J].工程热物理学报,2010,31(10):1739-1742.
[101]郝丽敏,赵耀华,刁彦华,全贞花.基于平板热管的大功率LED照明散热研究[J].工程热物理学报,2010,31(09):1575-1577.
[102]华高英,王伟,赵耀华,李磊,甘甜.地下交通联系隧道典型火灾场景的烟气控制研究[J].建筑科学,2010,26(08):92-97.DOI:10.13614/j.cnki.11-1962/tu.2010.08.002.
[103]樊洪明,全贞花,赵耀华,李炎锋.建筑环境与设备工程特色专业建设与实践[J].高等建筑教育,2010,19(04):42-45.
[104]王樱,刁彦华,赵耀华.微通道内流体流动的阻力特性[J].工程热物理学报,2010,31(06):998-1000.
[105]魏云,赵耀华,孙育英,谢静超,樊洪明.地铁火灾无线监控系统[J].都市快轨交通,2010,23(02):67-70.
[106]王伟,张富荣,肖婧,赵耀华.光电耦合在线测霜技术的可行性试验研究[J].应用基础与工程科学学报,2010,18(02):299-303.
[107]王伟,张富荣,赵耀华,肖婧,郭庆慈.冷表面温度对动态结霜过程霜层特性影响的实验研究[J].工程热物理学报,2010,31(04):663-666.
[108]郗艳红,毛军,樊洪明,赵耀华,朱升.地铁列车着火后在隧道内行驶的安全速度[J].华南理工大学学报(自然科学版),2010,38(03):25-30+36.
[109]何开远,樊洪明,赵耀华,王峰.岛侧地铁站台火灾烟气运动的数值模拟[J].工程热物理学报,2010,31(02):317-320.
[110]王伟,华高英,赵耀华,李磊.城市地下交通隧道实体通风测试与数值仿真[J].北京工业大学学报,2010,36(02):193-198.
[111]王伟,张富荣,郭庆慈,肖婧,赵耀华.空气源热泵在我国应用结霜区域研究[J].湖南大学学报(自然科学版),2009,36(S2):9-13.
[112]康晓龙,王伟,赵耀华,华高英.城市地下快速通道入口段排烟方案研究[J].工程热物理学报,2009,30(08):1353-1356.
[113]杨开篇,刁彦华,赵耀华,刘建荣,于雯静.热管式通风换热器热回收的实验研究[J].化学工程,2009,37(07):17-20.
[114]赵耀华,杨开篇,刁彦华,刘建荣,于雯静.热管换热器在通风换气中的应用研究[J].北京工业大学学报,2009,35(07):972-976.
[115]王樱,刁彦华,赵耀华.矩形微管内摩擦阻力特性的实验研究[J].工程热物理学报,2009,30(05):841-843.
[116]王樱,刁彦华,赵耀华.矩形微管内流动特性的实验研究[J].中国电机工程学报,2009,29(14):58-62.
[117]谢静超,万旭东,赵耀华,吉野博.城市住宅结构及耗能设备节能潜力的调查分析[J].节能技术,2009,27(02):121-127.
[118]何开远,樊洪明,赵耀华,石勃伟.地铁岛式站台烟控系统的性能化分析[J].都市快轨交通,2009,22(01):91-95.
[119]胡家鹏,赵耀华,樊洪明,杜修力.北京环线岛式车站两种排烟模式对烟气流动规律的影响[J].工程热物理学报,2009,30(02):288-290.
[120]赵耀华,刘建荣,刁彦华,杨开篇.微槽群散热器换热性能实验研究[J].北京工业大学学报,2009,35(01):58-62.
[121]刁彦华,王秋良,赵耀华.低温热管传热性能的实验研究[J].工程热物理学报,2008(11):1898-1900.
[122]何开远,樊洪明,赵耀华.地下车库诱导式通风与风管式通风系统的数值模拟分析[J].建筑科学,2008(10):85-90.
[123]谢静超,吉野博,赵耀华.数值模拟全寿命周期的住宅节能技术[J].工程热物理学报,2008(09):1573-1576.
[124]华高英,王伟,赵耀华,李磊,肖婧.城市地下交通联系隧道防火设计探讨[J].建筑科学,2008(08):15-18.
[125]张富荣,王伟,赵耀华,肖婧.动态结霜过程霜层参数测试技术研究与应用进展[J].建筑科学,2008(06):103-109.
[126]万旭东,谢静超,赵耀华,李炎锋,姜中天,吉野博.北京市夏季住宅用能节能潜力调查及分析[J].建筑科学,2008(06):19-24.
[127]华高英,王伟,赵耀华.北京写字楼采用Low-E玻璃窗的能耗与经济性分析[J].建筑科学,2008(06):61-65+89.
[128]赵耀华,刘建荣,刁彦华,杨开篇,康晓龙.微槽群相变散热器传热性能的实验研究[J].工程热物理学报,2008(05):825-827.
[129]万旭东,谢静超,赵耀华,李振海,李念平,刘京,吉野博.不同城市住宅热湿环境及能耗的调查实测结果分析[J].节能技术,2008(01):68-74.
[130]布文峰,刘志刚,赵耀华.微管内部流动粘性耗散的实验研究与数值模拟[J].哈尔滨工业大学学报,2008(01):160-163.
[131]华高英,王伟,赵耀华,康晓龙.城市地下快速路消防系统应用研究[J].消防技术与产品信息,2007(10):33-37.
[132]康晓龙,王伟,赵耀华,华高英.城市地下交通隧道性能化防火设计探讨[J].建筑科学,2007(08):4-8.
[133]康晓龙,王伟,赵耀华,华高英.公路隧道火灾事故调研与对策分析[J].中国安全科学学报,2007(05):110-116+176.DOI:10.16265/j.cnki.issn1003-3033.2007.05.013.
[134]赵耀华,胡家鹏,樊洪明,张达明,杜修力.地铁火灾CFD模拟时边界条件的研究[J].工程热物理学报,2007(02):310-312.
[135]樊洪明,张达明,赵耀华,胡家鹏.90°弯曲圆管内流动数值模拟[J].北京工业大学学报,2007(02):174-177.
[136]刘志刚,赵耀华.微钢管轴向导热对对流换热的影响[J].北京工业大学学报,2006(12):1125-1129+1152.
[137]刘志刚,赵耀华.微钢管内部强迫对流换热的实验研究[J].工程热物理学报,2006(05):850-852.
[138]刁彦华,赵耀华,王秋良.双组分混合制冷工质沸腾换热理论研究[J].化学工程,2006(08):13-16+27.
[139]颜晓虹,胡学功,赵耀华.微槽群相变式微冷系统的换热特性实验[J].中国科学院研究生院学报,2006(03):313-316.
[140]刘志刚,徐建中,赵耀华.微型钢管外表面温度场可视化实验研究[J].中国科学院研究生院学报,2006(03):317-322.
[141]刁彦华,赵耀华,王秋良.制冷工质R11池沸腾换热气泡行为的可视化研究[J].自然科学进展,2006(04):449-456.
[142]刘志刚,赵耀华.微粗糙管内部流动与对流换热的实验研究[J].北京工业大学学报,2006(02):167-172.
[143]刘志刚,徐建中,赵耀华.对流换热条件下微钢管壁面轴向导热的实验研究[J].上海理工大学学报,2006(01):75-78.DOI:10.13255/j.cnki.jusst.2006.01.018.
[144]颜晓虹,赵耀华.微管内流动沸腾流型的可视化研究[J].工程热物理学报,2005(S1):183-186.
[145]梁世强,陈坚,方徐应,徐靖中,赵耀华.水蒸气滴状冷凝过程的可视化实验研究[J].工程热物理学报,2005(06):88-90.
[146]刘志刚,赵耀华.微型管内流动特性的实验研究[J].工程热物理学报,2005(05):835-837.
[147]刘志刚,赵耀华.微管内流场的可视化实验研究[J].中国科学E辑:工程科学 材料科学,2005(07):717-724.
[148]刘志刚,张春平,赵耀华,唐大伟.一种新型腔式吸热器的设计与实验研究[J].太阳能学报,2005(03):38-43.
[149]刘志刚,赵耀华.微型管内摩擦特性的实验研究[J].上海理工大学学报,2005(02):123-126.DOI:10.13255/j.cnki.jusst.2005.02.007.
[150]胡学功,颜晓虹,赵耀华.微槽群蒸发器在电子芯片冷却方面的应用[J].化工学报,2005(03):412-416.
[151]刁彦华,赵耀华,王秋良.R-113池沸腾气泡行为的可视化及传热机理[J].化工学报,2005(02):227-234.
[152]刁彦华,赵耀华.双组分混合物沸腾换热的理论研究[J].工程热物理学报,2004(S1):103-106.
[153]沈芳,谭文长,赵耀华,T·增冈隆士.DECAY OF VORTEX VELOCITY AND DIFFUSION OF TEMPERATURE IN A GENERALIZED SECOND GRADE FLUID[J].Applied Mathematics and Mechanics(English Edition),2004(10):1151-1159.
[154]沈芳,谭文长,赵耀华,T·增冈隆士.广义二阶流体涡流速度的衰减和温度扩散[J].应用数学和力学,2004(10):1053-1060.
[155]赵耀华,鹤田隆治,胡学功.毛细微槽内的相变传热的实验研究[J].工程热物理学报,2004(05):816-818.
[156]张春平,刘志刚,赵耀华,唐大伟.碟式聚光太阳能热发电系统用腔式吸热器热性能分析[J].上海理工大学学报,2004(04):294-297.DOI:10.13255/j.cnki.jusst.2004.04.002.
[157]赵耀华,刁彦华,鹤田隆治,西川日出男.Heat Transfer in Nucleate Pool Boiling of Binary and Ternary Refrigerant Mixtures[J].Chinese Journal of Chemical Engineering,2004(03):39-44.
[158]赵耀华,姬朝玥.过冷沸腾气泡行为的实验研究[J].工程热物理学报,2004(01):109-111.
[159]赵耀华,刘志刚,鹤田隆治.电子器件制造过程中的一种均匀化加热法的数值研究[J].工程热物理学报,2003(05):870-872.
[160]董兆一,淮秀兰,赵耀华.超急速爆发沸腾传热的实验与理论研究[J].工程热物理学报,2003(04):667-669.
[161]赵耀华,张春平,鹤田隆治.多孔介质体干燥过程中含水率分布的可视化研究[J].工程热物理学报,2003(02):280-282.
[162]赵耀华.沸腾换热及临界热流的动态微液层模型[J].工程热物理学报,2002(S1):85-88.
[163]赵耀华,姬朝玥.微液层模型预测过冷沸腾的临界热流密度[J].工程热物理学报,2002(04):467-469.
[164]沈芳,严宗毅,赵耀华,堀井清之.气流排除倾斜管道积水的理论分析[J].应用数学和力学,2002(06):619-626.
[165]赵耀华,苑中显,马重芳,雷道亨,刘立志,增冈隆士.高温壁面液体射流冲击瞬态沸腾传热的实验研究[J].工程热物理学报,2000(01):101-104.
[166]赵耀华,马重芳.圆形自由射流冲击任意热流密度平板时的换热分析[J].北京工业大学学报,1989(03):7-13.
发表会议论文:
[1]李宁军; 赵耀华; 梁琳; 戴旭. 新型太阳能光伏光热集热器的实验研究[C]//.绿色设计 创新 实践——第5届全国建筑环境与设备技术交流大会文集.,2013:280-283.
[2]李宁军; 全贞花; 赵耀华; 唐潇. 基于微通道平板热管阵列的光伏光热系统实验研究[C].低碳经济与土木工程科技创新——2010中国(北京)国际建筑科技大会论文集.,2010:476-480.
[3]全贞花; 李宁军; 赵耀华; 唐潇. 基于平板热管的太阳能光伏光热系统实验研究[C].全国暖通空调制冷2010年学术年会论文集.[出版者不详],2010:17.
[4]肖婧; 王伟; 郭庆慈; 路伟鹏; 赵耀华. 空气源热泵在北京低温环境下运行性能的现场实测研究[C].全国暖通空调制冷2010年学术年会学术文集.[出版者不详],2010:247-250.
[5]刁彦华; 樊洪明; 谢静超; 赵耀华. 工科研究生《高等流体力学》教学思考[C].土木建筑教育改革理论与实践(第12卷).,2010:208-210.
[6]谢静超; 刁彦华; 毕月虹; 赵耀华. 探讨科研与教学结合的必要性[C].土木建筑教育改革理论与实践(第12卷).,2010:9-11.
[7]刁彦华; 谢静超; 毕月虹; 樊洪明; 赵耀华. 论理工科研究生科研能力的培养[C].土木建筑教育改革理论与实践(第12卷).,2010:32-34.
[8]谢静超; 毕月虹; 刁彦华; 赵耀华; 乔然. 关于“自动控制原理”教学的思考[C].土木建筑教育改革理论与实践(第12卷).,2010:433-435.
[9]张富荣; 王伟; 肖婧; 赵耀华. 冷表面结霜实验台的开发与应用[C].全国暖通空调制冷2008年学术年会论文集.2008:122.
[10]刁彦华; 樊洪明; 赵耀华. 流体力学课程中公式的讲授方法探讨[C].土木建筑教育改革理论与实践.,2008:99-101.
[11]樊洪明; 谢静超; 赵耀华; 全贞花. 浅谈主体教育与创新能力培养[C].土木建筑教育改革理论与实践.,2008:269-271.
[12]谢静超; 全贞花; 樊洪明; 赵耀华. 多媒体在教学应用中的优势与弊端[C].土木建筑教育改革理论与实践.,2008:241-243.