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Abstract

In this paper, new variable transformation formulas are introduced to solve the basic governing di�erential equa-

tions for conical shells. By performing magnitude order analysis and neglecting the quantities with h=R magnitude

order, the basic governing di�erential equations for conical shells are transformed into a second-order di�erential

equation with complex constant coe�cients. By solving this second-order di�erential equation, a simple and accurate

solution for conical shells is derived. The present solution is simpler than the exact solution because it does not use

Bessel's functions, and also more accurate than the equivalent cylinder solution. Numerical examples are given to il-

lustrate this conclusion. The simple and accurate solution provides a quick means for analyzing stresses in conical

shells. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Axisymmetric pressure hulls, such as cone and cylinder shells are important con®gurations which have been widely

used in engineering structures, such as submarine and submersible pressure hulls [1]. Calculation of stresses in these

structures is a necessity in design. For most of the axisymmetric thin-walled shells, exact solutions can be found but they

are very complex except for cylinders [2,3]. Special functions, such as Bessel functions, Thomson functions and Hankal

functions which are not very familiar to many engineers need to be used. Therefore, these exact solutions have not

found wide applications in practice. Finite element methods have been recommended in Ref. [1] but in terms of e�-

ciency, this may not be so favorable, especially in preliminary design. Furthermore, in comparison with the analytical

solutions, ®nite element methods provide less insight in understanding the fundamental mechanical behaviour of the

structural parameters. Therefore, analytical solutions are still sought by some researchers. For the general axisymmetric

structures, there are two di�erent approaches in this aspect. One is to use the concept of equivalent cylindrical shell, that

is, to de®ne an equivalent cylinder for the general axisymmetric shell and then apply the cylinder solution. This has been

used in Ref. [4] for submarine pressure hull design. However, the accuracy of these solutions has been found to be

poorer than the exact solutions. Therefore, these are called approximate solutions in this paper. The other is to in-

troduce some new types of variable transformations and apply the magnitude order analysis to simplify the governing

di�erential equation, simple and accurate solutions can also be derived.
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In Ref. [3], such a simple and accurate solution for the general shell of revolution was presented based on the

variable transformation formulas they introduced. The solution was expressed only by elementary functions such as

exponential functions and triangular functions. Conical shells are the shells of revolution, however, when we applied

their variable transformation formulas to conical shells, it was found that these formulas are singular. In order to

overcome this problem, a new type of variable transformations will be introduced in this paper. By using these new

variable transformation formulas together with the basic governing di�erential equations, a simple and accurate

solution which has the same accuracy as the exact solution will be derived. The main purpose of this paper is to present

such a solution. In order to compare the present solution with the exact solution and the approximate solution for

conical shells, the latter two solutions are brie¯y introduced in Sections 2 and 3, respectively. In Section 5, a numerical

example is used to compare the present solution with both exact solution and the approximate solution.

2. The exact solution for conical shells

Let 2a represent the vertex angle of a conical shell, S represents the coordinate along the generator of the conical

shell from the vertex of the conical shell (Fig. 1). For conical shells, the principal radii of curvature are R1 � 1 and

R2 � S tan a. By substituting these conditions to the governing di�erential equations for the general shell of revolution

[2,3], the following governing di�erential equations for conical shells can be obtained:

L U� � � ÿEhc1;

L c1� � �
U
D
;

�1�

where

U � N1R2; �2�

Nomenclature

a half vertex angle of the conical shell

u complement of the half vertex angle

h thickness of the conical shell

E Young's modulus of elasticity

l Poisson's ratio

D bending sti�ness

S coordinate along the generator of the conical shell

R2 principal radius of curvature of the conical shell

w displacement in the radial direction

N1 transverse shear force

T1 stress resultant in the generator direction

T2 stress resultant in radial direction

T �1 membrane stress resultant in the generator direction

T �2 membrane stress resultant in radial direction

M1 bending moment in the generator direction

M2 bending moment in radial direction

Dx displacement along the circumferential direction

r1 stress in the generator direction

r2 stress in circumferential direction

q1 face load per unit area along the generator direction

qn face load per unit area along the radial direction

q dead weight per unit area

P concentrated load

l slant length of the conical shell

r radius of parallel circular of the conical shell
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c1 �
dw
dS

;

L � � �� � � tana S
d2 � � �� �

dS2

�
� d � � �� �

dS
ÿ � � �� �

S

�
;

�3�

where L�� � �� is the Laplace operator; N1, the transverse shear force; w, the displacement in the radial direction; h, the

thickness of the conical shell, E, YoungÕs modulus of elasticity, and D, the bending sti�ness which is

D � Eh3

12�1ÿ l2� ; �4�

where l is PoissonÕs ratio. Substituting the ®rst formula of Eq. (1) into the second formula of Eq. (1), we have

LL U� � � k4U � 0; �5�
where

k4 � Eh
D
; �6�

Eq. (5) can be split into two conjugate di�erential equations of second order:

L�U� � ik2U � 0: �7�
Using the second formula of Eq. (3) and U � N1R2, R2 � S tana, Eq. (7) can be written as

d2 N1S� �
dS2

� 1

S
d N1S� �

dS
�
�
ÿ 1

S2
� ik2

S tana

�
N1S� � � 0: �8�

It is a pair of conjugate di�erential equations of second order. The solutions to Eq. (8) are also a pair of conjugate

complex functions. As long as the solution to any one of the Eq. (8) is obtained, then the real part and the imaginary

part of the solution are derived. Using these two parts, we can ®nd the general solution for di�erential equation (5).

Introducing the following transformations

g � x
��
i
p
� 2k

�����������
1

tana

r ���
S
p ��

i
p
;

x � 2
�������������������
3 1ÿ l2� �4

p �������������
2

h tana

r ���
S
p

;

�9�

Fig. 1. A conical shell with parameters de®ned.
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and using any one of two equations in Eq. (8), we have

d2 N1S� �
dg2

� 1

g
d N1S� �

dg
� 1

�
ÿ 4

g2

�
N1S� � � 0 �10�

which is a Bessel equation. The solution to this equation is

N1S � C1J2 g� � � C2H �1�2 g� �: �11�

In Eq. (11), J2(g) is the ®rst type of Bessel functions of second order; H
�1�
2 (g), the ®rst type of Hankal functions of second

order, and C1, C2 are complex constant coe�cients. The functions mentioned above can be expressed by means of

Thomson functions and their ®rst derivatives [5],

J2 g� � � 2

x
bei0x

�
ÿ berx

�
� i

2

x
ber0x

�
� beix

�
;

H �1�2 g� � � 2

p
2

x
ker0x

�
� keix

�
ÿ i

2

p
2

x
kei0x

�
ÿ kerx

�
;

�12�

where the symbol (0) represents the derivative of the function. If we de®ne

C1 � ÿA1 ÿ iA2;

C2 � p
2

B2� ÿ iB1�;
�13�

and substitute Eqs. (12) and (13) into Eq. (11) and select the real part, we will have

N1 � 1

S
A1 berx
��

ÿ 2

x
bei0x

�
� A2 beix

�
� 2

x
ber0x

�
� B1 kerx

�
ÿ 2

x
kei0x

�
� B2 keix

�
� 2

x
ker0x

��
; �14�

where A1, A2, B1, B2 are unknown constants which can be determined from boundary conditions. In many applications

the conical shell is long enough to make it possible to neglect the e�ect of one edge on another edge. In order to simplify

the calculation, we can choose the terms with B1 and B2 for edge AA of Fig. 1 and the terms with A1 and A2 for edge BB

of Fig. 1.

From the de®nition of U � N1R2, U can also be obtained from Eq. (14). Using the ®rst formula of Eq. (1) and the

second formula of Eq. (3), we can obtain

c1 � ÿ
L U� �

Eh
� ÿ tan2a

Eh
S

d2 N1S� �
dS2

�
� d N1S� �

dS
ÿ N1

�
: �15�

After obtaining U and c1, the calculation of the stress resultants T1 and T2, bending moments M1 and M2, and dis-

placement Dx along circumferential direction are performed using the basic de®nitions [2,3]:

T1 � ÿ U
R2

cosu
sinu

� ÿN1 tana;

T2 � ÿ dU
dS
� ÿ d N1S� �

dS
tana;

M1 � D
dc1

dS

�
� lcosu

R2 sinu
c1

�
� D

dc1

dS

�
� l

S
c1

�
;

M2 � D
cosu

R2 sinu
c1

�
� l

dc1

dS

�
� D

c1

S

�
� l

dc1

dS

�
;

Dx � ehS sina � S tana sina
Eh

�
ÿ d N1S� �

dS
� lN1

�
:

�16�

And the ®nal results for exact solution are expressed as follows:
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N1 �
�������������������
3�1ÿ l2�p
h tana

8

x2
A1 berx
��

ÿ 2

x
bei0x

�
� A2 beix

�
� 2

x
ber0x

�
� B1 kerx

�
ÿ 2

x
kei0x

�
� B2 keix

�
� 2

x
ker0x

��
;

c1 � ÿ
�������������������
3�1ÿ l2�

p 2 tana
Eh2

A1

��
ÿ beixÿ 2

x
ber0x

�
� A2 berx

�
ÿ 2

x
bei0x

�
� B1

�
ÿ keixÿ 2

x
ker0x

�
� B2 kerx

�
ÿ 2

x
kei0x

��
;

T1 � ÿ
�������������������
3�1ÿ l2�p

h
8

x2
A1 berx
��

ÿ 2

x
bei0x

�
� A2 beix

�
� 2

x
ber0x

�
� B1 kerx

�
ÿ 2

x
kei0x

�
� B2 keix

�
� 2

x
ker0x

��
;

T2 � ÿ 4

�������������������
3�1ÿ l2�p

h
A1

��
ÿ 2

x2
berx� 1

x
ber0x� 4

x3
bei0x

�
� A2

�
ÿ 2

x2
beixÿ 4

x3
ber0x� 1

x
bei0x

�
� B1

�
ÿ 2

x2
kerx� 1

x
ker0x� 4

x3
kei0x

�
� B2

�
ÿ 2

x2
keixÿ 4

x3
ker0x� 1

x
kei0x

��
;

M1 � ÿ A1 4�1
�"

ÿ l� beix
x2
� 8�1ÿ l� ber0x

x3
ÿ 2

x
bei0x

�
� A2

�
ÿ 4�1ÿ l� berx

x2
� 8�1ÿ l� bei0x

x3
� 2

x
ber0x

�

� B1 4�1
 

ÿ l� keix
x2
� 8�1ÿ l� ker0x

x3
ÿ 2

x
kei0x

!
� B2

 
ÿ 4�1ÿ l� kerx

x2
� 8�1ÿ l� kei0x

x3
� 2

x
ker0x

!#
;

M2 � ÿ A1

�"
ÿ 4�1ÿ l� beix

x2
ÿ 8�1ÿ l� ber0x

x3
ÿ 2l

x
bei0x

�
� A2 4�1

�
ÿ l� berx

x2
ÿ 8�1ÿ l� bei0x

x3
� 2l

x
ber0x

�

� B1

 
ÿ 4�1ÿ l� keix

x2
ÿ 8�1ÿ l� ker0x

x3
ÿ 2l

x
kei0x

!
� B2 4�1

 
ÿ l� kerx

x2
ÿ 8�1ÿ l� kei0x

x3
� 2l

x
ker0x

!#
;

Dx � tana sina
Eh

A1 �1
�"
� l�berxÿ 2�1� l� bei0x

x
ÿ x

2
ber0x

�
� A2 �1

�
� l�beix� 2�1� l� ber0x

x
ÿ x

2
bei0x

�

� B1 �1
 
� l�kerxÿ 2�1� l� kei0x

x
ÿ x

2
ker0x

!
� B2 �1

 
� l�keix� 2�1� l� ker0x

x
ÿ x

2
kei0x

!#
:

�17�
It is important to select the calculation method of Thomson functions and their derivatives for obtaining stable nu-

merical results. In this paper, Thomson functions and their derivatives are calculated by means of recursive formulas for

Thomson functions and their derivatives [5]. Based on the recursive formulas for Thomson functions and their de-

rivatives, it is easy to calculate Thomson functions of any order and their derivatives of any order if we know Thomson

functions of zero order and their derivatives of ®rst order. Thomson functions of zero order and their derivatives of ®rst

order are calculated using the polynomial approximation formulas given in Ref. [5].

After obtaining the stress resultants T1 and T2 and bending moments M1 and M2 the stress calculations are per-

formed using the following expressions:

r1 � T1 � T �1
h

� 6M1

h2
;

r2 � T2 � T �2
h

� 6M2

h2
;

�18�

where T �1 , T �2 are the stress resultants for membrane solution which are given as follows [2,3]:

T �1 � ÿ
1

S

Z
�q1

�
� qn tana�S dS � C

�
;

T �2 � ÿqnS tana;
�19�
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where q1, qn are the face load per unit area along the S direction and its normal direction, C is a constant to be de-

termined from the membrane boundary condition.

It is necessary to point out that the exact solution for conical shells given above is of an accuracy which is the same

as the thin-walled shell theory. Due to the various assumptions made in thin-walled shell theory, the error magnitude

order of thin-walled shell theory is h=R, so the error magnitude order of the exact solution for conical shells given here is

also h=R.

3. The approximate solution for conical shells

Considering the complexity of the exact solution for the shell of revolution, the approximate solutions based on the

concept of an equivalent cylindrical shell are generally used for solving problems on the shell of revolution [3,4]. Let the

values of u, S, r, R2 � r= sinu at the large end be u0, S0, r0, R20 � r0= sinu0, the cylindrical shell which the thickness is

the same as the shell of revolution and the radius is jR20j is de®ned as the equivalent cylindrical shell. For the equivalent

cylindrical shell, the governing di�erential equation for the axial symmetrical case becomes

d4c1�cylinder�
dS4

� Eh
DR2

20

c1�cylinder� � 0: �20�

The error order between the governing di�erential equation (20) and the governing di�erential equation of the general

shell of revolution for the axial symmetrical case is
��������
h=R

p
. For Eq. (20), the solution can easily be found [2±4]. The

solutions for the conical shell as shown in Fig. 1 can be expressed as follows:

Ehc1 �
d

dS
�Ehw�; U � DR2

d3w
dS3

;

T1 � ÿD tana
d3w
dS3

; T2 � 1

R2

Ehw; M1 � D
d2w
dS2

; M2 � lD
d2w
dS2

;

N1 � D
d3w
dS3

; Qx � D
cosa

d3w
dS3

; Dx � wcosa;

�21�

where

Ehw � C1h�ÿbS0� ÿ C2f�ÿbS 0� � C3h�bS0� � C4f�bS0�;
d

dS
�Ehw� � b�C1u�ÿbS0� � C2w�ÿbS0� ÿ C3u�bS0� � C4w�bS 0��;

d2

dS2
�Ehw� � 2b2�C1f�ÿbS0� � C2h�ÿbS0� � C3f�bS0� ÿ C4h�bS0��;

d3

dS3
�Ehw� � 2b3�ÿC1w�ÿbS0� � C2u�ÿbS0� � C3w�bS 0� � C4u�bS0��;

�22�

h�bS0� � eÿbS0 cosbS0; h�ÿbS 0� � ebS0 cosbS0;

f�bS0� � eÿbS0 sinbS0; f�ÿbS0� � ÿebS0 sinbS0;

u�bS0� � eÿbS0 �cosbS0 � sinbS0�; u�ÿbS0� � ebS0 �cosbS 0 ÿ sinbS 0�;
w�bS0� � eÿbS0 �cosbS0 ÿ sinbS0�; w�ÿbS0� � ebS0 �cosbS 0 � sinbS 0�:

�23�

The unknown constants C1, C2, C3 and C4 in the expressions given above are determined from boundary conditions. As

we know the stress resultants T1 and T2 and bending moments M1 and M2, the stress calculations are made using Eq.

(18). Due to the error introduced in the basic governing di�erential equation, the accuracy of this solution is of a

magnitude of order of
��������
h=R

p
.

4. The simple and accurate solution for conical shells

The approximate solution for conical shells is simple but the accuracy is low. The accuracy of the exact solution for

conical shells is high but is very complex. Is it possible to derive a solution for conical shells which possesses both
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accuracy and simplicity? The answer is positive. In Ref. [3], by introducing the following variable transformation

formulas:

y � ~c1

����������������
R2

R1

sinu

r
; �24�

n �
�������������������
3 1ÿ l2� �4

p Z u

u0

R1j j����������
R2j jh

p du; �25�

y1 �
��������
R1j j

p����������
R2j jc4

p y; �26�

they are able to derive such a solution for the general shell of revolution, where c is a constant parameter de®ned in

Appendix A. Their solutions are supposed to be valid for the general shell of revolution. However, for conical shells, the

principal radius of curvature R1 � 1, thus the variable transformation formula (24) turns out y � 0, the variable

transformation formula (25) becomes R1 � 1 times du � 0, while the third variable transformation formula, Eq. (26),

also becomes y1 � 1 �0. Therefore, u cannot be used as a principal curvature coordinate for conical shells. In order to

overcome this singularity, a new set of the variable transformation formulas suitable for conical shells are proposed in

this paper. They are

y �
���
S
p

~c1; �27�

n �
�������������������
3 1ÿ l2� �4

p �������������
h tana
p 2

���
S
p�
ÿ 2

�����
S0

p �
; �28�

y1 � 1���������������
cS tana4
p y; �29�

where c is de®ned in Eq. (A.18). Following the similar procedure as that used in Ref. [3], the simple and accurate

solution has been re-derived for conical shells. The detailed process of derivation is given in Appendix A and the so-

lution is given as follows:

c1 �
����������������������
12 1ÿ l2� �p

Eh2

�������
R5

20
4
p ���

S4
p c1eÿn cos n�� � f1� � c2en cos� ÿ n� f2�

�
;

U � Eh2����������������������
12 1ÿ l2� �p 2k2

Eh

�������
R20

S
4

r
c1eÿn sin n�� � f1� � c2en sin� ÿ n� f2�

�

�
�������
R5

20
4
p ���

S4
p c1eÿn sin n�� � f1� � c2en sin� ÿ n� f2�

�
;

N1 �
�������
R5

20
4
p
R2

���
S4
p c1eÿn sin n�� � f1� � c2en sin� ÿ n� f2�

�
;

�30�

T1 � ÿN1 tana

� ÿ
�������
R5

20
4
p
R2

���
S4
p tana c1eÿn sin n�� � f1� � c2en sin� ÿ n� f2�

�
;

T2 �
�������
R5

20
4
p ���

S4
p c1eÿn

"(
ÿ

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p cos n� � f1� � 1

4S

 
�

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p

!
sin n� � f1�

#

� c2en

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p cos�

"
ÿ n� f2� � 1

4S

 
ÿ

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p

!
sin� ÿ n� f2�

#)
;

�31�
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k1 �
����������������������
12 1ÿ l2� �p

Eh2

�������
R5

20
4
p ���

S4
p c1eÿn

"(
ÿ

���
34
p

1ÿ l2� ����������������
Sh tana
p sin n� � f1� ÿ 1

4S

 
�

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p

!
cos n� � f1�

#

� c2en

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p sin�

"
ÿ n� f2� ÿ

1

4S

 
ÿ

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p

!
cos� ÿ n� f2�

#)
;

k2 �
���
1
p

2 1ÿ l2� �
Eh2

tana
R2

�������
R5

20
4
p ���

S4
p c1eÿn cos n�� � f1� � c2en cos� ÿ n� f2�

�
;

�32�

M1 � h����������������������
12 1ÿ l2� �p �������

R5
20

4
p ���

S4
p c1eÿn

"(
ÿ

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p sin n� � f1� ÿ

1

4S

 
�

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p ÿ l

tana
R2

!
cos n� � f1�

#

� c2en

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p sin�

"
ÿ n� f2� ÿ 1

4S

 
ÿ

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p ÿ l

tana
R2

!
cos� ÿ n� f2�

#)
;

M2 � h����������������������
12 1ÿ l2� �p �������

R5
20

4
p ���

S4
p c1eÿn tana

R2

 "(
ÿ l

4S
ÿ l

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p

!
cos n� � f1� ÿ l

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p sin n� � f1�

#

� c2en tana
R2

 "
ÿ l

4S
� l

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p

!
cos� ÿ n� f2� � l

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p sin� ÿ n� f2�

#)
;

�33�

e2 � 1

Eh
T2� ÿ lT1�

� 1

Eh

�������
R5

20
4
p ���

S4
p c1eÿn

"(
ÿ

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p cos n� � f1� �

1

4S

 
�

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p � l

tana
R2

!
sin n� � f1�

#

� c2en

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p cos�

"
ÿ n� f2� � 1

4S

 
ÿ

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p � l

tana
R2

!
sin� ÿ n� f2�

#)
: �34�

The displacement along the circumferential direction Dx can be expressed as

Dx � wcosa� u sina � e2R2 cosa

� R2 cosa
Eh

�������
R5

20
4
p ���

S4
p c1eÿn

"(
ÿ

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p cos n� � f1� �

1

4S

 
�

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p � l

tana
R2

!
sin n� � f1�

#

� c2en

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p cos�

"
ÿ n� f2� � 1

4S

 
ÿ

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p � l

tana
R2

!
sin� ÿ n� f2�

#)
: �35�

5. Numerical examples

In order to test the present solution proposed in this paper, we calculate the stresses of a conical shell shown in Fig. 2

by means of the various solutions given above. The thickness h of the conical shell is 3 cm, the slant length l is 10 cm and

Fig. 2. A closed conical shell under loading.
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the half vertex angle a of the conical shell equals 60°. The upper end of the conical shell is closed and the lower edge of

conical shell is supported by hinges, in other words, the boundary condition for the lower edge of the conical shell is

simply supported boundary condition. Consequently, the circle at the lowest edge is not movable but is able to turn

round. In the calculation of stresses two loading cases are considered. Loading case 1 is the dead weight q of the conical

shell. Let us assume that the dead weight q per unit area in the middle surface of the conical shell is 1 MPa. Loading case

2 is the concentrated load P. Let P equal 10 000 N. YoungÕs modulus of elasticity E and PoissonÕs ratio l are

E � 2:1� 105 MPa and l � 0:3, respectively.

The stress results obtained by all previously given solutions are given in Tables 1 and 2 and Fig. 3. Table 1

makes a comparison between the stress results of the exact solution and of the present solution in loading case 1. It

can be observed from Table 1 that the two stress results agree with each other very well. Table 2 gives the same

comparison in loading case 2. The comparison shows that the two stress results are still in good agreement except

for several small stresses (<10ÿ6 MPa). Because of the calculation error it is possible that very small stresses are

not precise.

Fig. 3 makes comparison of the stress results obtained by the present solution and the approximate solution in

loading case 1. Maximum relative errors are ÿ28:6%, ÿ37:6% and ÿ46:2% for h � 3:0, h � 4:5 and h � 6:0 cm, re-

spectively. It is evident from Fig. 3 that the relative error increases as the thickness of conical shell increases.

6. Conclusions

This paper has presented a simple and accurate solution for conical shells with the same accuracy as the exact

solution. The present solution was obtained by introducing a set of new variable transformations and by neglecting

the terms with the order of magnitude of h=R. Di�erent from the exact solution which are expressed by special

functions, the present solution for conical shells can be expressed only by the elementary functions, such as expo-

nential functions and triangular functions. Numerical examples have been used to compare the stress results obtained

by the present solution with that from the exact solution and almost identical results have been obtained. The present

solution is also compared with the approximate solution and it is found that quite large error in stresses could be

introduced by using the approximate solution for conical shells. Consequently, it can be concluded that the present

solution for conical shells is simpler compared to the exact solution and more accurate compared to the approximate

solution.

Appendix A

A.1. Derivation of the simple and accurate solution

In the derivation, it is necessary to use the equilibrium equations, geometrical relations and stress±strain relations, so

these equations are ®rst given as follows:

U � N1R2 � N1S tana; �A:1�

T1 � ÿ U
R2

tana;
T2 � ÿ dU

dS ;

e1 � ÿ 1
Eh

U
R2

tanaÿ l dU
dS

h i
;

e2 � ÿ 1
Eh

dU
dS ÿ lU

R2
tana

h i
;

8>>>><>>>>: �A:2�

k1 � dc1

dS ;
k2 � tan a

R2
c1;

M1 � D k1 � lk2� � � D dc1

dS � l tan a
R2

c1

� �
;

M2 � D k2 � lk1� � � D tan a
R2

c1 � l dc1

dS

� �
:

8>>>>><>>>>>:
�A:3�

The governing di�erential equations for conical shells in the coordinate system as shown in Fig. 1 have been given in

Eqs. (1)±(3).
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Introducing a complex variable

~c1 � c1 � i
U

Eh2
����������������������
12 1ÿ l2� �p� : �A:4�

Multiplying the ®rst formula of the Eq. (1) by i=�Eh2=
����������������������
12�1ÿ l2�p � then adding to the second formula of Eq. (1) yields

L�~c1� � i
~c1

h
����������������������
12 1ÿ l2� �p� � 0: �A:5�

Letting

T � T1 � T2; M � M1 �M2; �A:6�

and substituting Eqs. (A.2) and (A.3) into Eq. (A.6), we have

T � ÿ dU
dS

�
� tana

R2

U
�
;

M � 1� � l�D dc1

dS

�
� tana

R2

c1

�
:

�A:7�

Complex stress resultants are de®ned as follows:

~T1 � T1 � i
Eh2����������������������

12 1ÿ l2� �p k2;

~T2 � T2 � i
Eh2����������������������

12 1ÿ l2� �p k1;

~T � ~T1 � ~T2 � T � i

����������������������
12 1ÿ l2� �p

h
M

1� l
:

�A:8�

Substituting Eqs. (A.2), (A.3) and (A.7) into Eq. (A.8), the complex stress resultants expressed by complex argument ~c1

are obtained,

Fig. 3. The relative error between the present solution and the approximate solution.
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~T1 � i
Eh2����������������������

12 1ÿ l2� �p tana
R2

~c1;

~T2 � i
Eh2����������������������

12 1ÿ l2� �p d~c1

dS
;

~T � i
Eh2����������������������

12 1ÿ l2� �p d~c1

dS

 
� tana

R2

~c1

!
:

�A:9�

Using the second formula of Eqs. (3), and (A.5) can be written as

d2~c1

dS2
� 1

S
d~c1

dS
ÿ 1

S2
~c1 � i

1

S tana
1

h
����������������������
12 1ÿ l2� �p� ~c1 � 0: �A:10�

In order to eliminate the term with ®rst-order derivative with respect to S in Eq. (A.10), let us introduce new argument y

which is de®ned as

y � ~c1 exp
1

2

Z
1

S
dS

� �
�

���
S
p

~c1: �A:11�

The ®rst-order and second-order derivatives of new argument y with respect to S

dy
dS
�

���
S
p d~c1

dS
� 1

2
���
S
p ~c1;

d2y
dS2
�

���
S
p d2~c1

dS2
� 1���

S
p d~c1

dS
ÿ 1

4
�����
S3
p ~c1:

�A:12�

Substituting Eqs. (A.11) and (A.12) into Eq. (A.10), we have

d2y
dS2
ÿ 3

4

1

S2
y � i

1

S tana
1

h=
����������������������
12 1ÿ l2� �p y � 0: �A:13�

Now let us perform the magnitude order analysis to every term of Eq. (A.13). As far as the general shell of revolution is

concerned, boundary e�ect will decay rapidly away from the boundary edge. From the point of view of the magnitude

order, calculating the derivative with respect to S every time is equivalent to multiplying by b � �������������������
3�1ÿ l2�4

p
=
������������
h R20j jpÿ �

,

i.e., dividing by
������������
h R20j jp

. Since the e�ect of the solution is only con®ned to local region near the boundary edge, it is

reasonable that the values of the geometrical parameter in the local region, such as S, R2, are considered to equal nearly

to the values at the boundary edge S0, R20. Therefore, for conical shells, S � R2= tana, the ratio of magnitude order for

every term in Eq. (A.13) becomes

y
h R20j j :

y

R20j j2 tan2a=
:

y
R20j jh :

Multiplying every term by h R20j j yields

y :
h tan2a

R20j j y : y:

If the conical shell is not too ¯at, the value of tana will not be very large, then the order of magnitude of the three terms

is

1 :
h

R20j j : 1:

If we neglect the second term in Eq. (A.13), the error magnitude order will be h= R20j j. Therefore, Eq. (A.13) can be

simpli®ed to

d2y
dS2
� i

1

S tana
1

h=
����������������������
12 1ÿ l2� �p y � 0: �A:14�

The proceeding equation can be written as
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d2y
dS2
ÿ ~F 2y � 0; �A:15�

where

~F 2 � ÿi
1

S tana
1

h
����������������������
12 1ÿ l2� �p� : �A:16�

Solving Eq. (A.16), we have

~F � � 1ÿ i���
2
p 1���������������

cS tana
p ; �A:17�

where

c � h����������������������
12 1ÿ l2� �p : �A:18�

Eq. (A.15) is a di�erential equation with variable coe�cient. In order to transform Eq. (A.15) to the di�erential

equation with constant coe�cients we have to introduce the following argument transformations:

n � 1���
2
p
Z s

s0

dS���������������
cS tana
p �

�������������������
3 1ÿ l2� �4

p �������������
h tana
p 2

���
S
p�
ÿ 2

�����
S0

p �
;

y1 � by;

b � 1���������������
cS tana4
p �

~F
f

 !1=2

;

f � � 1ÿ i���
2
p :

�A:19�

Using Eq. (A.19), we can calculate the ®rst-order and the second-order derivatives of n with respect to S and the ®rst-

order and the second-order derivatives of b with respect to n.

dn
dS
� b2���

2
p � 1���

2
p

~F
f
;

db
dn
� 1���

2
p f1=2 ~F ÿ3=2 d ~F

dS
;

d2b

dn2
� n3=2 ~F ÿ5=2 d2 ~F

dS2

24 ÿ 3

2
~F ÿ7=2 d ~F

dS

 !2
35:

�A:20�

From the second and the third formula of Eq. (A.19), we have

y � y1

b
�

~F
f

 !ÿ1=2

y1: �A:21�

The derivatives of y with respect to S are

dy
dS
� 1���

2
p b

dy1

dn

�
ÿ db

dn
y1

�
;

d2y
dS2
� 1

2

~F
f

~F
f

 !1=2

d2y1

dn2

24 ÿ d2b

dn2
y1

35: �A:22�

By means of the third formula of Eq. (A.20), the second equation of Eq. (A.22) can be written as

d2y
dS2
� 1

2

~F
f

~F
f

 !1=2

d2y1

dn2

8<: ÿ f3=2 ~F ÿ5=2 d2 ~F
dS2

24 ÿ 3

2
~F ÿ7=2 d ~F

dS

 !2
35y

9=;: �A:23�
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Substituting Eqs. (A.21) and (A.23) into Eq. (A.15), we obtain

d2y1

dn2
ÿ 1� ÿ i�2 1

8><>: � 1

2 ~F 2

1

~F

d2 ~F
dS2
ÿ 3

2

1

~F 2

d ~F
dS

 !2
24 35

9>=>;y1 � 0: �A:24�

According to Eqs. (A.17) and (A.18), we know that the argument ~F only depends on the con®guration size and material

properties of the conical shell, therefore, the varying length of ~F should be R20j j. Based on the reason explained above

the magnitude orders of the derivative of ~F with respect to S are

1

~F

d2 ~F
dS2
� 1

~F

d

dS

~F
R20j j

 !
� 1

R20j j2 ;

1

~F 2

d ~F
dS

 !2

� 1

~F 2

~F
R20j j

 !2

� 1

R20j j2 ;

1

2 ~F 2

1

~F

d2 ~F
dS2
ÿ 3

2

1

~F 2

d ~F
dS

 !2
24 35 � 1

2 ~F 2

1

R20j j2 �
h

R20j j ;

where the mark � expresses magnitude order equivalent. According to the magnitude order analysis given above the

underlined term in Eq. (A.24) can be neglected. The error magnitude order will be h=R2 after neglecting the underlined

term. Thus, Eq. (A.24) is simpli®ed to

d2y1

dn2
ÿ 1� ÿ i�2y1 � 0: �A:25�

Eq. (A.25) is the di�erential equation with complex constant and contains only the second-order derivative term and the

zero-order derivative term with respect to n. The solution to this di�erential equation is

y1 � D01eÿ 1ÿi� �n � D02e 1ÿi� �n; �A:26�
where D01 and D02 are unknown complex constants. By using Eq. (A.19), y can be obtained as

y �
���
S4
p

D001eÿ 1ÿi� �n� � D002e 1ÿi� �n�; �A:27�
where D001 and D002 are unknown complex constants. The relations between D01, D02 and D001, D002 are

D001 �
�������������
c tana4
p

D01;

D002 �
�������������
c tana4
p

D02:
�A:28�

Using Eq. (A.11), we can obtain the complex argument ~c1,

~c1 �
1���
S4
p D001eÿ 1ÿi� �n� � D002e 1ÿi� �n�: �A:29�

For simplicity, let

D001 �
2k2

Eh
c1eif1

�������
R20

4
p

;

D002 �
2k2

Eh
c2eif2

�������
R20

4
p

;

�A:30�

where

k �
�������������������
3 1ÿ l2� �4

p �������
R20

h

r
: �A:31�

Substituting Eq. (A.30) into Eq. (A.29), we have

~c1 �
2k2

Eh

�������
R20

S
4

r
c1eif1 eÿ 1ÿi� �n� � c2eif2 e 1ÿi� �n�: �A:32�
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Now, we substitute Eq. (A.32) into Eq. (A.9) and then have

~T1 � i
Eh2����������������������

12 1ÿ l2� �p tana
R2

~c1;

� i tana

�������
R5

20
4
p
R2

���
S4
p c1eif1 eÿ 1ÿi� �n� � c2eif2 eÿ 1ÿi� �n�;

~T2 � i
Eh2����������������������

12 1ÿ l2� �p d~c1

dS
;

�
�������
R5

20
4
p ���

S4
p

"(
ÿ

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p ÿ i

1

4S

 
�

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p

!#
c1eif1 eÿ 1ÿi� �n

�
�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p

"
ÿ i

1

4S

 
ÿ

�������������������
3 1ÿ l2� �4

p ���������������
Sh tana
p

!#
c2eif2 eÿ 1ÿi� �n

)
:

�A:33�

Selecting the real part and the imaginary part of Eqs. (A.32) and (A.33), respectively, and using Eqs. (A.1)±(A.4) and

(A.8), the stress resultants, bending moments and deformations can be calculated which are given in Section 4, Eqs.

(30)±(35).
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