您现在的位置: 中国科技创新网 > 文章中心 > 创新人物百科 > 信息工程 > 文章正文
专家信息 科学研究 论文专著 荣誉奖励 媒体报道

专家信息:


曹军威,男,博士,现任清华大学信息技术研究院研究员、院长助理。

教育及工作经历:

2009年至今清华大学天体物理中心兼任教授。

2007年至今清华大学信息技术研究院助理院长。

2007年至今天体物理和空间研究Kavli研究所LIGO的实验室研究联盟。

2006年至今清华大学信息技术研究院教授。

2004年至2006年麻省理工学院空间研究中心LIGO的实验室研究科学家。

2002年至2004年德国C&C的研究实验室研究员。

2001年至2002年华威大学计算机科学系研究员。

2001年英国Warwick大学计算机博士毕业。

1991年至1998年清华大学自动化系本科、硕士毕业。

社会兼职:

资料更新中……

科学研究:


研究方向:

主要从事先进计算技术及其应用研究。

承担科研项目情况:

负责或参加完成10多项国家科技863计划、教育部、自然科学基金、973和横向研究项目。

1、教育部:Elop在计算技术和应,2009-2011。

2、中国国家自然科学奖基金:对网络基础设施的理论和资源优化与动态约束算法,2009-2011。

3、中国教育部的科研基金:引力波数据分析使用开放科学网,2008-2009。

4、国家863高技术研发计划:大型网络化数据整合与查询处理,2008-2009。

5、国家863高技术研发计划:组织,管理和农业海量知识资源服务,2007-2009。

6、教育部:全国综合系统开放课程,2007-2010。

7、国家863高技术研发计划:数字农业知识网格,2006-2010。

8、清华大学研究院:网络基础设施的应用启用,2008-2010。

9、中国自然科学基金委员会:以往项目中国美研讨会网络基础设施,2009。

10、清华大学骨干人才计划:网络基础设施技术,2007-2008。

11、信息科学与技术学院清华大学:网络基础设施技术,2006 -2008。

12、LIGO的部署数据网格,网格,使社区引力波分析,2004-2006。

13、奥运- FLEMM:基于OGSA的FlexX /分子力学,2003-2004。

14、欧盟信息社会技术(IST)项目:GEMSS:网格仿真功能的医疗服务,2002 -2004。

15、NEC支持的项目:相关谱的集群和网格作业调度,2002-2004。

16、贸易和工业省(METI)日本网络计算项目部:优化利用网格Datafarm对接构象,2002-2003。

17、美国航天局艾姆斯研究中心:面向计算网格系统管理工具发展,2001-2002。

18、华威研究生院主席特别研究奖学金:基于Agent的网格计算资源管理,1999-2001。

19、方法和性能建模,测量,分析,评价和预测工具,1999-1999。

20、国家863高技术重点研究项:一个计算机集成制造中的应用平台,1996-1998。

21、BMCST - MIS系统:为北京管理科学和技术委员会管理信息系统,1995-1996。

科研成果:

资料更新中……

发明专利:

1、提高分布式系统性能调优速度的方法 曹军威; 张帆 清华大学 【中国专利】清华大学 2009-12-23

论文专著:


发表论文110余篇,出版专著10余部。

出版专著:

1《多代理系统理论、方法与应用》范玉顺,曹军威 北京 [海德堡];清华大学出版社;施普林格出版,2002年。

2《复杂系统的面向对象建模、分析与设计》范玉顺,曹军威清华大学出版社,2000年9。

3《网络基础设施技术及应用》Nova科学出版社,2009年。

4《网络基础设施与应用技术》新科学出版社,2009年。

5《网格数据流》Nova科学出版社,2008年。

6《对于大规模分布式环境中的性能预测技术研究》Nova科学出版社,2007年。

7《绩效评估的自组织网格计算代理》Nova科学出版社,2007年。

8《引力波数据分析:对工作流程的科学分析技术的使用为例》施普林格出版社,2007年。

发表论文:

英文:

1. VOMES: a Virtual Organization Membership Evaluation System. J. Cao and Z. Wang. (submitted)

2. Use of Agent-based Service Discovery for Resource Management in Metacomputing Environment. J. Cao, D. J. Kerbyson and G. R. Nudd. Proc. 7th Int. Euro-Par Conf., Manchester, UK, LNCS 2150, 882-886, 2001. (research note)

3. Upper Limits on Gravitational Wave Emission from 78 Radio Pulsars. LIGO Scientific Collaboration, M. Kramer, and A. G. Lyne. Physical Review D, 76(4), 042001(20), 2007.

4. Upper Limits from LIGO and TAMA Detectors on the Rate of Gravitational Wave Bursts. LIGO Scientific Collaboration and TAMA Collaboration. Physical Review D, 72(12), 122004(16), 2005.

5. Upper Limit Map of a Background of Gravitational Waves. LIGO Scientific Collaboration. Physical Review D, 76(8), 082003(11), 2007.

6. The Open Science Grid. R. Pordes for the Open Science Grid Consortium. Proc. Computing in High Energy and Nuclear Physics Conf., Interlaken, Switzerland, 2004.

7. The Einstein@Home Search for Periodic Gravitational Waves in LIGO S4 Data. LIGO Scientific Collaboration. Physical Review D, 79(2), 022001(29), 2009.

8. Technology Challenges of Cyberinfrastructure (in Chinese). J. Cao. Int. Academic Development, 5(2), 32-36, 2010.

9. System Architecture of New CIMS Application Integration Platform (in Chinese). J. Cao, Y. Fan and C. Wu. J. Tsinghua University, 39(7), 68-71, 1999. (also in Proc. 5th China CIMS Conference, Chengdu, PRC, 1998)

10. Storage Aware Resource Allocation for Grid Data Streaming Pipelines. W. Zhang, J. Cao, Y. Zhong, L. Liu, and C. Wu. Proc. 2008 IEEE Int. Conf. on Networking, Architecture, and Storage, Chongqing, China, 179-180, 2008. (short paper)

11. Status of LCGT. LCGT Collaboration. Classical and Quantum Gravity, 27(8), 084004(8), 2010.

12. Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm. LIGO Scientific Collaboration. The Astrophysical J. Letters, 701(2), L68-L74, 2009.

13. Self-Organizing Agents for Grid Load Balancing. J. Cao. Proc. 5th IEEE/ACM Int. Workshop on Grid Computing, conj. Supercomputing Conf., Pittsburgh, PA, USA, 388-395, 2004. (also as Technical Report LR-04-205, NEC Corporation, 2004)

14. Searching for a Stochastic Background of Gravitational Waves with LIGO. LIGO Scientific Collaboration. The Astrophysical J., 659(2), 918-930, 2007.

15. Searches for Periodic Gravitational Waves from Unknown Isolated Sources and Scorpius X-1: Results from the Second LIGO Science Run. LIGO Scientific Collaboration. Physical Review D, 76(8), 082001(35), 2007.

16. Searches for Gravitational Waves from Known Pulsars with S5 LIGO Data. LIGO Scientific Collaboration and Virgo Collaboration. The Astrophysical J., 713(1), 671-685, 2010.

17. Search of S3 LIGO Data for Gravitational Wave Signals from Spinning Black Hole and Neutron Star Binary Inspirals. LIGO Scientific Collaboration. Physical Review D, 78(4), 042002(19), 2008.

18. Search for High Frequency Gravitational Wave Bursts in the First Calendar Year of LIGO's Fifth Science Run. LIGO Scientific Collaboration. Physical Review D, 80(10), 102002(14), 2009.

19. Search for Gravitational-wave Inspiral Signals Associated with Short Gamma-Ray Bursts during LIGO's Fifth and Virgo's First Science Run. LIGO Scientific Collaboration and Virgo Collaboration. The Astrophysical J., 715(2), 1453-1461, 2010.

20. Search for Gravitational-wave Bursts in the First Year of the Fifth LIGO Science Run. LIGO Scientific Collaboration. Physical Review D, 80(10), 102001(26), 2009.

21. Search for Gravitational-wave Bursts in LIGO Data from the Fourth LSC Science Run. LIGO Scientific Collaboration. Classical and Quantum Gravity, 24(22), 5343-5369, 2007.

22. Search for Gravitational-wave Bursts Associated with Gamma-ray Bursts using Data from LIGO Science Run 5 and Virgo Science Run 1. LIGO Scientific Collaboration and Virgo Collaboration. The Astrophysical J., 715(2), 1438-1452, 2010.

23. Search for Gravitational Waves from Low Mass Compact Binary Coalescence in 186 Days of LIGO's Fifth Science Run. LIGO Scientific Collaboration. Physical Review D, 80(4), 047101(8), 2009.

24. Search for Gravitational Waves from Low Mass Binary Coalescences in the First Year of LIGO's S5 Data. LIGO Scientific Collaboration. Physical Review D, 79(12), 122001(14), 2009.

25. Search for Gravitational Waves from Compact Binary Coalescence in LIGO and Virgo Data from S5 and VSR1. LIGO Scientific Collaboration and Virgo Collaboration. Physical Review D, 82(10), 102001(11), 2010.

26. Search for Gravitational Waves from Binary Inspirals in S3 and S4 LIGO Data. LIGO Scientific Collaboration. Physical Review D, 77(6), 062002(13), 2008.

27. Search for Gravitational Waves from Binary Black Hole Inspirals in LIGO Data. LIGO Scientific Collaboration. Physical Review D, 73(6), 062001(17), 2006.

28. Search for Gravitational Waves Associated with 39 Gamma-Ray Bursts Using Data from the Second, Third, and Fourth LIGO Runs. LIGO Scientific Collaboration. Physical Review D, 77(6), 062004(22), 2008.

29. Search for Gravitational Wave Ringdowns from Perturbed Black Holes in LIGO S4 Data. LIGO Scientific Collaboration. Physical Review D, 80(6), 062001(9), 2009.

30. Search for Gravitational Wave Radiation Associated with the Pulsating Tail of the SGR 1806-20 Hyperflare of 27 December 2004 using LIGO. LIGO Scientific Collaboration. Physical Review D, 76(6), 062003(12), 2007.

31. Search for Gravitational Wave Bursts in LIGO's Third Science Run. LIGO Scientific Collaboration. Classical and Quantum Gravity, 23(8), S29-S39, 2006.

32. Search for Gravitational Wave Bursts from Soft Gamma Repeaters. LIGO Scientific Collaboration, S. Barthelmy, N. Gehrels, K. C. Hurley, and D. Palmer. Physical Review Letters, 101(21), 211102(6), 2008.

33. Search for Gravitational Wave Bursts from Six Magnetars. LIGO Scientific Collaboration and Virgo Collaboration. (submitted)

34. Scheduling Remote Access to Scientific Instruments in Cyberinfrastructure for Education and Research. J. Yin, J. Cao, Y. Wang, L. Liu, and C. Wu. Proc. 7th IEEE/ACM Int. Symp. on Cluster Computing and the Grid, Rio de Janeiro, Brazil, 426-433, 2007.

35. Scheduling Data Blocks for Concurrent and Storage-aware Grid Data Streaming. W. Zhang, J. Cao, Y. Zhong, L. Liu, and C. Wu. Int. J. Grid and Utility Computing, 2011.

36. Research of Operation Administration System Agents of Integration Platform (in Chinese). J. Cao, Y. Fan and C. Wu. CIMS, 5(3), 39-43, 1999.

37. Remote Computing Resource Management from Small Devices by Utilising WSRF. S. Huang, M. VanHilst, J. Cao, and J. Mangs. Int. J. Computer Aided Engineering and Technology, Special Issue on Smart Homes: Technologies and Applications, 2(2-3), 199-217, 2010.

38. Redundant Virtual Machines Management in Virtualized Cloud Platform. F. Zhang, J. Cao, C. Hong, L. Liu and C. Wu. Int. J. Modeling, Simulation, and Scientific Computing, 2011.

39. Real-time Gravitational-wave Burst Search for Multi-messenger Astronomy. J. Cao and J. Li. Int. J. Modern Physics D, 2011.

40. Queue Scheduling and Advance Reservations with COSY. J. Cao and F. Zimmermann. Proc. 18th IEEE Int. Parallel & Distributed Processing Symp., Santa Fe, NM, USA, 63, 2004. (also as Technical Report LR-03-189, NEC Corporation, 2003)

41. Qualification Evaluation in Virtual Organizations Based on Fuzzy Analytic Hierarchy Process. F. Zhang, J. Cao, L. Liu, and C. Wu. Proc. 7th Int. Conf. on Grid and Cooperative Computing, Shenzhen, China, 539-547, 2008.

42. Predictions for the Rates of Compact Binary Coalescences Observable by Ground-based Gravitational-wave Detectors. LIGO Scientific Collaboration, Virgo Collaboration, and K Belczynski. Classical and Quantum Gravity, 27(17), 173001(25), 2010.

43. Performance-based Workload Management for Grid Computing. D. P. Spooner, S. A. Jarvis, J. Cao, G. R. Nudd, S. Saini and D. J. Kerbyson. Proc. 3rd Annual Symp. of Los Alamos Computer Science Institute, Santa Fe, NM, USA, 2002.

44. Performance-aware Workflow Management for Grid Computing. D. P. Spooner, J. Cao, S. A. Jarvis, L. He, and G. R. Nudd. The Computer J., Special Focus - Grid Performability, 48(3), 347-357, 2005.

45. Performance Prediction Technology for Agent-based Resource Management in Grid Environments. J. Cao, S. A. Jarvis, D. P. Spooner, J. D. Turner, D. J. Kerbyson and G. R. Nudd. Proc. 11th IEEE Heterogeneous Computing Workshop, conj. 16th IEEE Int. Parallel & Distributed Processing Symp., Fort Lauderdale, FL, USA, 86, 2002.

46. Performance Prediction and its use in Parallel and Distributed Computing Systems. S. A. Jarvis, D. P. Spooner, H. N. Lin Choi Keung, J. Cao, S. Saini, and G. R. Nudd. Future Generation Computer Systems, Special Section on System Performance Analysis and Evaluation, 22(7), 745-754, 2006.

47. Performance Prediction and its use in Parallel and Distributed Computing Systems. S. A. Jarvis, D. P. Spooner, H. N. Lin Choi Keung, J. Cao, S. Saini, and G. R. Nudd. Proc. 2nd Int. Workshop on Performance Modeling, Evaluation, and Optimization of Parallel and Distributed Systems, conj. 17th IEEE Int. Parallel & Distributed Processing Symp., Nice, France, 276, 2003.

48. Performance Prediction and Evaluation. S. Jarvis, M. Coppola, J. Cao, and D. Kerbyson. Proc. 16th Int. Euro-Par Conf. on Parallel Processing, LNCS 6271 PART 1, 86-87, 2010.

49. Performance Optimization of Temporal Reasoning for Grid Workflows Using Relaxed Region Analysis. K. Xu, J. Cao, L. Liu, and C. Wu. Proc. 22nd IEEE Int. Conf. on Advanced Information Networking and Applications Workshops, GinoWan, Okinawa, Japan, 187-194, 2008.

50. Performance Modeling of Parallel and Distributed Computing Using PACE. J. Cao, D. J. Kerbyson, E. Papaefstathiou and G. R. Nudd. Proc. 19th IEEE Int. Performance, Computing and Communications Conf., Phoenix, AZ, USA, 485-492, 2000.

51. Performance Evaluation of an Agent-Based Resource Management Infrastructure for Grid Computing. J. Cao, D. J. Kerbyson and G. R. Nudd. Proc. 1st IEEE/ACM Int. Symp. on Cluster Computing and the Grid, Brisbane, Australia, 311-318, 2001.

52. Ordinal Optimized Scheduling of Scientific Workflows in Elastic Compute Clouds. F. Zhang, J. Cao, K. Hwang, and C. Wu. (submitted)

53. Observation of a Kilogram-scale Oscillator near its Quantum Ground State. LIGO Scientific Collaboration. New Journal of Physics, 11(7), 073032(13), 2009.

54. Modelling of ASCI High Performance Applications Using PACE. J. Cao, D. J. Kerbyson, E. Papaefstathiou and G. R. Nudd. Proc. 15th Annual UK Performance Engineering Workshop, Bristol, UK, 413-424, 1999.

55. Localised Workload Management using Performance Prediction and QoS Contracts. D. P. Spooner, J. Cao, J. D. Turner, H. N. Lin Choi Keung, S. A. Jarvis and G. R. Nudd. Proc. 18th Annual UK Performance Engineering Workshop, Glasgow, UK, 69-80, 2002.

56. Local Grid Scheduling Techniques Using Performance Prediction. D. P. Spooner, S. A. Jarvis, J. Cao, S. Saini and G. R. Nudd. IEE Proceedings - Computers and Digital Techniques, 150(2), 87-96, 2003.

57. LIGO: The Laser Interferometer Gravitational-Wave Observatory. LIGO Scientific Collaboration. Reports on Progress in Physics, 72(7), 076901(25), 2009.

58. Joint LIGO and TAMA300 Search for Gravitational Waves from Inspiralling Neutron Stars. LIGO Scientific Collaboration and TAMA Collaboration. Physical Review D, 73(10), 102002(10), 2006.

59. Implications for the Origin of GRB 070201 from LIGO Observations. LIGO Scientific Collaboration and K. C. Hurley. The Astrophysical J., 681(2), 1419-1430, 2008.

60. Implementation of Grid-enabled Medical Simulation Applications Using Workflow Techniques. J. Cao, J. Fingberg, G. Berti, and J. G. Schmidt. Proc. 2nd Int. Workshop on Grid and Cooperative Computing, Shanghai, China, LNCS 3032, 34-41, 2003. (also as Technical Report LR-03-185, NEC Corporation, 2003)

61. How Are You Feeling? A Social Network Model to Monitor the Health of Post-Operative and Remote Patients. J. J. Mulcahy, S. Huang, J. Cao, and F. Zhang. Proc. IEEE Int. Systems Conf., Montreal, Canada, 2011.

62. High Performance Service Discovery in Large-Scale Multi-Agent and Mobile-Agent Systems. J. Cao, D. J. Kerbyson and G. R. Nudd. Int. J. Software Engineering and Knowledge Engineering, Special Issue on Multi-Agent Systems and Mobile Agents, 11(5), 621-641, 2001.

63. GridFlow: Workflow Management for Grid Computing. J. Cao, S. A. Jarvis, S. Saini and G. R. Nudd. Proc. 3rd IEEE/ACM Int. Symp. on Cluster Computing and the Grid, Tokyo, Japan, 198-205, 2003.

64. Grid Resource Management and Scheduling for Data Streaming Applications. W. Zhang, J. Cao, Y. Zhong, L. Liu, and C. Wu. Computing and Informatics, 29, 1001-1028, 2010.

65. Grid Load Balancing Using Intelligent Agents. J. Cao, D. P. Spooner, S. A. Jarvis, and G. R. Nudd. Future Generation Computer Systems, Special Issue on Intelligent Grid Environment: Principles and Applications, 21(1), 135-149, 2005.

66. Grid Information Services Using Software Agents. H. N. Lin Choi Keung, J. Cao, D. P. Spooner, S. A. Jarvis and G. R. Nudd. Proc. 18th Annual UK Performance Engineering Workshop, Glasgow, UK, 187-198, 2002.

67. Grid Enabled LIGO Data Monitoring. J. Cao, E. Katsavounidis, and J. Zweizig. Proc. IEEE/ACM Supercomputing Conf., Seattle, WA, USA, 2005. (poster, also as LIGO Document No. G050573-00-E, 2005)

68. Fuzzy Allocation of Fine-grained Compute Resources for Grid Data Streaming Applications. W. Zhang, J. Cao, Y. Zhong, L. Liu, and C. Wu. Int. J. Grid and High Performance Computing, 2(4), 1-11, 2010.

69. Flexible Software Systems (in Chinese). J. Cao and Y. Fan. Computer Science, 26(2), 74-77, 1999.

70. First Search for Gravitational Waves from the Youngest Known Neutron Star. LIGO Scientific Collaboration. The Astrophysical J., 722(2), 1504-1513, 2010.

71. First LIGO Search for Gravitational Wave Bursts from Cosmic (Super)strings. LIGO Scientific Collaboration. Physical Review D, 80(6), 062002(11), 2009

72. First Joint Search for Gravitational-wave Bursts in LIGO and GEO600 Data. LIGO Scientific Collaboration. Classical and Quantum Gravity, 25(24), 245008(21), 2008.

73. First Cross-Correlation Analysis of Interferometric and Resonant-Bar Gravitational-Wave Data for Stochastic Backgrounds. LIGO Scientific Collaboration and ALLEGRO Collaboration. Physical Review D, 76(2), 022001(17), 2007.

74. Fast Autotuning Configurations of Parameters in Distributed Computing Systems Using Ordinal Optimization. F. Zhang, J. Cao, L. Liu, and C. Wu. Proc. 38th Int. Conf. on Parallel Processing Workshops, Vienna, Austria, 190-197, 2009.

75. Evaluation of Advertising Effectiveness Using Agent-Based Modeling and Simulation. J. Cao. Proc. 2nd UK Workshop of SIG on Multi-Agent Systems, Bristol, UK, 1999.

76. Enhanced Adaptive Scheduling for the Grid Harvest Service. W. Sliamu, Y. Hou, and J. Cao. Proc. WRI World Congress on Software Engineering, Vol. 1, Xiamen, China, 35-39, 2009.

77. Enabling Access to WSRF from Mobile Devices. J. C. Mangs, S. Huang, and J. Cao. Proc. 4th Int. Conf. on Semantics, Knowledge and Grid, Beijing, China, 392-395, 2008.

78. Einstein@Home Search for Periodic Gravitational Waves in Early S5 LIGO Data. LIGO Scientific Collaboration and D. P. Anderson. Physical Review D, 80(4), 042003(14), 2009.

79. Dynamic Controlling of Data Streaming Applications for Cloud Computing. J. Cao and W. Zhang. (submitted)

80. Dynamic Application Integration Using Agent-Based Operational Administration. J. Cao, D. J. Kerbyson and G. R. Nudd. Proc. 5th Int. Conf. on the Practical Application of Intelligent Agents and Multi-Agent Technology, Manchester, UK, 393-396, 2000.

81. Development of a DMT Monitor for Statistical Tracking of Gravitational-wave Burst Triggers Generated from the Omega Pipeline. J. Li and J. Cao. Proc. 9th Asia-Pacific Int. Conf. on Gravitation and Astrophysics, Wuhan, China, 92-101, 2010.

82. Cost Estimation of Advance Reservations over Queued Jobs: a Quantitative Study. C. Zhao, J. Cao, H. Wu, and F. Zhang. Int. J. Modeling, Simulation, and Scientific Computing, 1(3), 317-332, 2010.

83. Concurrent and Storage-Aware Data Streaming for Data Processing Workflows in Grid Environments. W. Zhang, J. Cao, Y. Zhong, L. Liu, and C. Wu. Tsinghua Science and Technology, 15(3), 335-346, 2010.

84. Committee-based Evaluation and Selection of Grid Resources for QoS Improvement. Z. Wang and J. Cao. Proc. 10th IEEE/ACM Int. Conf. on Grid Computing, Banff, Alberta, Canada, 138-144, 2009.

85. Cloud Manufacturing: a New Service-oriented Networked Manufacturing Model (in Chinese). B. Li, L. Zhang, S. Wang, F. Tao, J. Cao, X. Jiang, X. Song, and X. Chai. CIMS, 16(1), 1-8, 2010.

86. Calibration of the LIGO Gravitational Wave Detectors in the Fifth Science Run. LIGO Scientific Collaboration. Nuclear Instruments and Methods in Physics Research A, 624(1), 223-240, 2010.

87. Block-based Concurrent and Storage-aware Data Streaming for Grid Applications with Lots of Small Files. W. Zhang, J. Cao, Y. Zhong, L. Liu, and C. Wu. Proc. 1st Int. Workshop on Service-Oriented P2P Networks and Grid Systems, conj. 9th IEEE Int. Symp. on Cluster Computing and the Grid, Shanghai, China, 538-543, 2009.

88. Beating the Spin-down Limit on Gravitational Wave Emission from the Crab Pulsar. LIGO Scientific Collaboration. The Astrophysical J. Letters, 683(1), L45-L49, 2008.

89. Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects. LIGO Scientific Collaboration and Virgo Collaboration. Classical and Quantum Gravity, 25(11), 114051(12), 2008.

90. ASTROD Optimized for Gravitational Wave Detection: ASTROD-GW. ASTROD Collaboration. Proc. 38th COSPAR Scientific Assembly, Bremen, Germany, 2010.

91. ASTROD Optimized for Gravitational Wave Detection: ASTROD-GW (in Chinese). ASTROD Collaboration. Proc. 6th Deep-Space Exploration Annual Meeting, Sanya, China, 2009.

92. ARMSim: a Modeling and Simulation Environment for Agent-based Grid Computing. J. Cao. SIMULATION, Special Issue on Modeling and Simulation Applications in Cluster and Grid Computing, 80(4-5), 221-229, 2004.

93. ARMS: an Agent-based Resource Management System for Grid Computing. J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson and G. R. Nudd. Scientific Programming, Special Issue on Grid Computing, 10(2), 135-148, 2002.

94. Application of Support Vector Machines to Multivariate Gravitational-wave Veto Analysis. W. Zhen, J. Cao, L. Blackburn, E. Katsavounidis, and X. Wang. Classical and Quantum Gravity, 2011.

95. Application Characterisation Using a Lightweight Transaction Model. D. P. Spooner, J. D. Turner, J. Cao, S. A. Jarvis and G. R. Nudd. Proc. 17th Annual UK Performance Engineering Workshop, Leeds, UK, 215-225, 2001.

96. An Upper Limit on the Stochastic Gravitational-Wave Background of Cosmological Origin. LIGO Scientific Collaboration and Virgo Collaboration. Nature, 460(7258), 990-994, 2009.

97. An Integrated Resource Management and Scheduling System for Grid Data Streaming Applications. W. Zhang, J. Cao, Y. Zhong, L. Liu, and C. Wu. Proc. 9th IEEE/ACM Int. Conf. on Grid Computing, Tsukuba, Japan, 258-265, 2008.

98. AMREF: An Adaptive MapReduce Framework for Real Time Applications. F. Zhang, J. Cao, X. Song, H. Cai, and C. Wu. Proc. 9th Int. Conf. on Grid and Cloud Computing, Nanjing, China, 157-162, 2010.

99. All-sky Search for Periodic Gravitational Waves in LIGO S4 Data. LIGO Scientific Collaboration. Physical Review D, 77(2), 022001(38), 2008.

100. All-sky Search for Gravitational-wave Bursts in the First Joint LIGO-GEO-Virgo Run. LIGO Scientific Collaboration and Virgo Collaboration. Physical Review D, 81(10), 102001(20), 2010.

101. All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data. LIGO Scientific Collaboration. Physical Review Letters, 102(11), 111102(6), 2009.

102. AIGO: a Southern Hemisphere Detector for the Worldwide Array of Ground Based Interferometric Gravitational Wave Detectors. AIGO Collaboration. Classical and Quantum Gravity, 27(8), 084005(12), 2010.

103. Agile Data Streaming for Grid Applications. W. Zhang, J. Cao, Y. Zhong, L. Liu, and C. Wu. Proc. 2nd Int. Workshop on Personalization in Grid and Service Computing, conj. 7th Int. Conf. on Grid and Cooperative Computing, Shenzhen, China, 739-746, 2008.

104. Agent-based Resource Management for Grid Computing. J. Cao, D. P. Spooner, J. D. Turner, S. A. Jarvis, D. J. Kerbyson, S. Saini and G. R. Nudd. Proc. 2nd Int. Workshop on Agent based Cluster and Grid Computing, conj. 2nd IEEE/ACM Int. Symp. on Cluster Computing and the Grid, Berlin, Germany, 350-351, 2002. (short paper)

105. Agent-Based Grid Load Balancing Using Performance-Driven Task Scheduling. J. Cao, D. P. Spooner, S. A. Jarvis, S. Saini and G. R. Nudd. Proc. 17th IEEE Int. Parallel & Distributed Processing Symp., Nice, France, 49, 2003.

106. Agent-Aided Software Engineering of High Performance Applications. J. Cao. Proc. 12th Int. Conf. on Software & Systems Engineering and their Applications, Paris, France, 1999.

107. Adjacent Matrix based Deduction for Grid Workflow Applications. F. Zhang, J. Cao, L. Liu, and C. Wu. Proc. 1st Int. Conf. on Networking and Distributed Computing, Hangzhou, China, 349-356, 2010.

108. A Transaction Definition Language for Java Application Response Measurement. J. D. Turner, D. P. Spooner, J. Cao, S. A. Jarvis, D. N. Dillenberger and G. R. Nudd. J. Computer Resource Management, 105, 55-65, 2002.

109. A Search for Gravitational Waves Associated with the August 2006 Timing Glitch of the Vela Pulsar. LIGO Scientific Collaboration and S. Buchner. Physical Review D, 83(4), 042001(13), 2010.

110. A Joint Search for Gravitational Wave Bursts with AURIGA and LIGO. AURIGA Collaboration and LIGO Scientific Collaboration. Classical and Quantum Gravity, 25(9), 095004(16), 2008.

111. A Finite Element Based Tool Chain for the Planning and Simulation of Maxillo-Facial Surgery. J. G. Schmidt, G. Berti, J. Fingberg, J. Cao, and G. Wollny. Proc. 4th European Congress on Computational Methods in Applied Sciences and Engineering, Jyvaskyla, Finland, 2004. (also as Technical Report LR-04-197, NEC Corporation, 2004)

中文:

1 云制造——面向服务的网络化制造新模式 李伯虎; 张霖; 王时龙; 陶飞; 曹军威; 姜晓丹; 宋晓; 柴旭东 北京航空航天大学复杂产品先进制造系统教育部工程研究中心; 北京仿真中心; 重庆大学机械工程学院; 清华大学信息技术研究院; 北京慧点科技开发有限公司 【期刊】计算机集成制造系统 2010-01-15

2 集成平台运控系统代理模型研究 曹军威; 范玉顺; 吴澄 清华大学自动化系 【期刊】计算机集成制造系统-CIMS 1999-06-30

3 新一代 CIMS应用集成平台系统体系结构 曹军威; 范玉顺; 吴澄 清华大学自动化系 【期刊】清华大学学报(自然科学版) 1999-07-10

4 柔性软件系统的概念、方法与实践 曹军威; 范玉顺 清华大学CIMS工程研究中心; 清华大学CIMS工程研究中心 北京 【期刊】计算机科学 1999-02-15

5 ASTROD空间引力波探测优化方案:ASTROD-GW 倪维斗; 门金瑞; 梅晓红; 雷成明; 董瑶; A.Pulido Paton; 董鹏; 王刚; 黄超光; 龚雪飞; 张杨; 王海涛; 彭秋和; 曹军威; 王立; 侯欣宾; 张庆祥; 张晓敏; Hansjrg Dittus; Jian Guo; Claus Lammerzahl; Diana Shaul; Timothy Sumner 【会议】中国宇航学会深空探测技术专业委员会第六届学术年会暨863计划“深空探测与空间实验技术”重大项目学术研讨会论文集 2009-12-01

荣誉奖励:


1、2008年入选教育部新世纪优秀人才支持计划。

资料更新中……

媒体报道:


曹军威:物联时代的新探索

曹军威 博士,现任清华大学信息技术研究院研究员、院务委员会副主任,美国麻省理工学院访问科学家。长期致力于基础架构科学、技术与应用研究。从事应用集成、网格计算、海量数据分析、云计算、物联网、智能电网等方面的基础研究、成果转化和产业合作,致力于从基础架构的独特视角总结其中的一般规律,开发共性关键技术,并在教育、制造、电力、石化等行业获得广泛应用。

物联网被认为是继计算机、互联网之后,世界信息产业的第三次浪潮,它集传感、通信、网络、计算、控制技术为一体,应用领域遍及国民经济和社会服务的各个方面,如智能电网、智能交通、现代物流、数字医疗、节能环保、精准农业等,成为我国未来发展的战略新兴产业。

计算机实现了信息和资源的数字化,互联网使得信息的传递和共享成为可能,那么物联网发展的内在动因是什么呢?清华大学信息技术研究院研究员曹军威和他的团队一直致力于从基础架构(Infrastructure)的独特视角开展物联网技术与应用研究,并指出物联网兴起的内在动因是21世纪新一轮基础架构化对资源深度互联的需求。

“数联”到“物联”的跨越

技术的最新挑战往往最先出现在重大科学前沿问题的探索过程中,比如Web的发明源于欧洲核子研究中心CERN。在回国工作之前,曹军威曾经在美国麻省理工学院空间研究中心工作过两年多,开展爱因斯坦引力波探测和数据分析工作。当时,美国提出新一轮的基础架构化将以信息技术为引擎,主要指基于分布计算机、信息和通信技术的基础架构,称为信息基础架构(Cyberinfrastructure),其对于知识经济的重要性可以与传统基础架构对工业经济的支撑作用相比拟。

当时美国建成了世界上精度最高的激光干涉引力波天文台LIGO,希望能直接探测和验证爱因斯坦广义相对论所预言的引力波的存在。天文台实时采集上万个传感器的数据,采样频率最高达每秒16000次,汇集成上PB(1000TB)量级的引力波数据,需要分布在美国和欧洲十几个节点的高性能集群计算机,为几百名LIGO科学合作组织成员进行引力波数据分析提供服务,这本身就是一个广域范围内集传感、通信、存储、计算等为一体的复杂系统,是未来信息基础架构的典型代表。

2006年,曹军威回国后组织创建了清华大学LIGO工作组。在他的带领下,工作组在引力波科学研究和LIGO实时数据分析方面的工作不断取得进展,得到国际同行的认可。2009年9月,清华大学成为首个来自中国的LIGO科学合作组织成员,引力波数据分析结果发表在Nature等国际期刊上。

在数字世界中,已经有一些类似现实世界中基础架构的成功例子,比如通过简短的E-mail地址就可以实现通信;通过简单的域名就可以登录相应的Web主页。这些实现了数字世界中的信息共享。而今数字世界的互联发展进一步提出了与物理系统实时交互的需求,传统基础架构要实现深度互联也必须以信息技术为引擎,从“数联”到“物联”的发展便成为必然。

物联网系统运行中涉及一组关键过程,包括物理状态感知、信息表示、信息传输、分析决策和控制执行。物理状态感知主要是传感器网通过有线和无线的网络传感数据。操作执行主要由数字控制系统负责完成。物联网中,传感器和控制器的分布很广且数据量巨大。过去10年,对物联网的研究大部分都集中于感知层的无线网络技术,但是,如何把各层网络通信与应用软件紧密地融合在一起,从而开发出高性能的物联网应用,仍然是一个巨大的挑战。曹军威和他的研究团队认为,物联网发展的内在动因是新一轮的基础架构化进程对数字和物理资源深度互联的需求。

深化基础架构研究

在物联网技术兴起的今天,曹军威根据十多年的科研和实践经验,指出要想加速物联网相关技术的基础架构化进程,基础理论与方法的研究迫在眉睫。基础架构是如此重要,但迄今为止对于基础架构的论述还主要停留在定性描述的层面或者局限于特定领域,还没有对基础架构通用共有的特性进行定量、科学和系统的深入研究。基础架构学(Infrastructurology)是对不同基础架构的通用共有规律进行深入研究的科学,目的是为当前以物联网为代表的新一轮基础架构化进程提供坚实的理论依据、切实的方法指导和具体的技术实现。

看似是不同行业产业的前沿问题,实际上从基础架构化的角度进行诠释时都是相通的。定量、科学、系统地研究基础架构主要从时间和空间两个维度上研究基础架构共通的演进规律。这是之前任何单一学科或研究领域所未曾涉及的。曹军威认识到:一方面基础架构的形成需要时间,需要不断成熟的技术作为支撑,同时还受到经济、政治、文化等非技术因素的影响,但从整体上看还是有一定的规律可以探索,一旦掌握了这些规律,便可以更好地指导和加速新的基础架构化进程;另一方面,基础架构的空间分布也是有规律可循的,最为直观的是大多数成熟的基础架构都采用分层树状结构,比如电网就分为输电、供电、配电等几个层次,互联网上的Domain Name Service也是采用树状结构等。当然,基础架构学本身还是一门应用基础科学。相较于系统论或复杂性理论研究都是以一般意义上的系统为研究对象,基础架构虽然也是复杂系统,但还是具有许多自身的特点,需要结合和运用基础理论,采用不同的研究方法进行深入探索。为了避免在开始阶段基础架构学的研究流于空泛,以特定领域、技术或应用作为切入点和着手点是必经之路。

为了推动基础架构学发展,进而在物联网技术及其应用方面有所贡献,曹军威迅速组建并发展起一支由20余人组成的高水平科研团队。近年来,该团队获得国家科技部“973”计划、“863”计划、教育部质量工程和国家自然科学基金等10余项国家级科研项目的资助。曹军威发表文章110余篇,为国内外同行引用2200余次,申请专利6项,并入选2008年教育部新世纪优秀人才支持计划。

物联网与智能电网

除了在理论层面开展基础架构学研究外,曹军威和他的团队一直认为智能电网是物联网的第一应用。在广域范围内实现从感知到控制全过程的紧密耦合和深度互联,智能电网在物联网应用中的代表性是其他应用所无法替代的。选择电力物联网应用系统可以最大程度地验证和说明物联网技术的发展,这也是曹军威和他的团队目前的工作重点。

智能电网把现代先进的传感—通信—网络—计算—控制技术应用于电力系统以达到最大限度地提高设备效率,提高安全可靠性,节能减排,提高用户的供电质量,提高可再生能源的利用效率。目前,我国的GDP总量不到全世界的5%,却耗费全世界30%以上的钢铁、47%的水泥,而且增长趋势不减。照这样下去,中国能源是不可能实现可持续发展的。智能电网的提出正是国家能源战略和安全的需要。

智能电网包括三个层次:第一层次,实现对电网运行状态、资产设备状态和客户用电信息的实时、全面和详细监视,消除监测盲点,提高电网可观测性;第二层次,提供先进的信息技术手段,实现对电力企业信息的传输和集成;第三层次,在信息集成的基础上进行高级分析,实现提高可靠性、降低成本、提高收益和效率的目标。实际上这跟物联网的基本结构是不谋而合的。物联网技术应用于智能电网不是名词游戏,也不是概念炒作,它是现代电力系统发展的内在需求和必然趋势,是现代电力系统的发展新阶段,将引发一系列新概念、新思路、新平台、新前景,为电力系统技术的进步带来大的变革。

电能是即时平衡的,过去电网靠“以不变应万变”来达到动态平衡,于是大量冗余造成浪费,现在充分发挥物联网的监控作用,有可能靠与负荷互动来削“峰”填“谷”和减少热备用,如果可行将引起从设计到运行的巨大变革。如果基于物联网技术,使得测量和通讯问题(指令下行仅数十毫秒)得到解决,通过控制达到瞬间平衡,那么迄今靠“试探”来达到新平衡的各种稳定措施,如暂态稳定、频率稳定、低频/低压减载控制等都应该重新考虑。过去由于信息传递的困难,众多研究者都力求选用测量本地量作为反馈来达到最好的控制效果,如果广泛采用物联网技术,可以把电力系统中最佳可观点的物理量送到最佳可控的控制器去,打破“不可观”和“不可控”的约束,就会给电力系统的控制带来革命。信息采集和信息传递得到解决,可望消除监测盲点,这样,电力系统一些重要参数的随机性、时变性、不可知性等可望克服,使过去只能“靠加大保守性来换取可靠性”的一系列经典难题有可能得到解决。

面对电力物联网所带来的巨大发展空间,曹军威和他的团队开始大胆的思考和扎实的探索,并作为子课题负责人,获得国家“973”计划“物联网基础理论和设计方法研究”项目的资助,负责实现电力物联网仿真验证平台,为物联网理论和方法研究提供支撑环境。他们发现,实现电力物联网的主要挑战在于广域电网是一个复杂大系统,硬件设备、广域网络和负荷用户等多方面的因素带来了很大的随机性和不确定性,传统解决问题的方法已经不能从实质上解决广域电网监控的“精”和“准”的问题,需要依赖物联网新技术保证信息传递的保真和忠实,软件编程的忠实和可信等。具体而言,需要研究在线、实时、海量数据的采集、传输与存储,变参数、变约束、多时间尺度下的数据分析与决策和变故障情况,以及变执行机构的分层系统控制技术等。曹军威和他的团队坚信,把现代信息技术广泛引入到电力系统确实可以解决以前认为无法解决的问题,产生空前巨大的经济、社会效益。

电力系统是传统基础架构的典型代表,新一轮基础架构化进程提出了智能电网的要求,而要实现电力系统发电和用电的互动,实现广域电网感知到控制全过程的紧密耦合和深度互联,引入物联网技术势在必行。物联网是从“数联”向“物联”延伸的产物,其产业发展离不开具体行业应用的依托和支持,实现电力物联网是其中重要的发展方向。曹军威和他的团队会沿着这个方向坚定地走下去,探索和尝试将物联网和智能电网有机结合,力争在基础研究、成果转化和产业合作等方面作出新的贡献。

文章来源:《科学时报》 2011-03-08

文章录入:zgkjcx    责任编辑:zgkjcx 
  • 上一篇文章:

  • 下一篇文章:
  •  

    关于我们 | 加入收藏 | 联系我们 | 设为首页 | 广告说明 | 合作项目

    名称:科技创新网 工信部备案号:京ICP备13040577号-2 京公网安备11010802045251号
    版权所有:未经授权禁止复制或建立镜像 E-Mail:zgkjcx08@126.com